• NPN-TRANS-002

    NPN-TRANS-002

    The Ariel AI Chip, a state-of-the-art integrated circuit designed for high-performance computing applications, incorporates an innovative architecture that leverages radical transistor technology to optimize AI and machine learning tasks. At the heart of this chip lies a quad-core CPU operating at a clock speed of 2GHz, distinguished by its part number CPU-RT-4C-2G. The chip's power management is efficiently handled by a DC power supply, specified as DCPS-5V, ensuring a stable 5V input. Key to its operation are two NPN transistors, identified by part numbers NPN-TRANS-001 and NPN-TRANS-002, which, along with a pair of 1kΩ resistors (RES-1K and RES-1K-002) and a 10µF capacitor (CAP-10UF), form the critical signal processing and conditioning circuitry. This assembly is designed for seamless integration into advanced computing systems, particularly those focused on Flux AI environments, where its performance and efficiency can be fully leveraged. The Ariel AI Chip sets a new benchmark in AI computing, offering unparalleled processing power and efficiency for cutting-edge applications.

    radicaldeepscale

    16 Comments

    1 Star


  • RES-1K

    RES-1K

    The Ariel AI Chip, a pioneering component in the realm of artificial intelligence hardware, integrates a suite of electronic elements tailored for high-performance computing applications. At the heart of this assembly lies a CPU with a Radical Transistor architecture, featuring a quad-core setup clocked at 2GHz, identified by the part number CPU-RT-4C-2G. Power management is facilitated through a DC Power Supply, marked DCPS-5V, ensuring a stable 5V supply to the intricate circuitry. The chip's switching capabilities are bolstered by two NPN transistors, NPN-TRANS-001 and NPN-TRANS-002, which play a crucial role in signal modulation. Essential to the chip's operation are the passive components: two 1kΩ resistors (RES-1K and RES-1K-002) and a 10µF capacitor (CAP-10UF), which together with the transistors, form a robust network ensuring reliable performance under varying load conditions. Designed for integration into advanced AI systems, this chip stands out for its innovative use of standard components in a configuration that emphasizes efficiency, reliability, and high-speed data processing capabilities.

    radicaldeepscale

    1 Comment

    1 Star


  • CPU-RT-4C-2G

    CPU-RT-4C-2G

    The Ariel AI Chip, an innovative component designed for high-performance computing applications, integrates a sophisticated array of electronic parts to deliver unparalleled processing capabilities. At the heart of this system is a CPU with a radical transistor architecture, featuring a core count of 4 and a clock speed of 2GHz, identified by its part number CPU-RT-4C-2G. Power management within the chip is efficiently handled by a DC Power Supply, rated at 5V, with the part number DCPS-5V, ensuring stable and reliable operation. The chip's signal processing and amplification needs are addressed through the inclusion of two NPN transistors, with part numbers NPN-TRANS-001 and a similar variant, providing the necessary gain and switching capabilities for complex computational tasks. Signal conditioning is further enhanced by a pair of 1kΩ resistors, RES-1K and RES-1K-002, and a 10µF capacitor, CAP-10UF, which work together to filter and stabilize the power supply and signal pathways, ensuring clean and noise-free operation. This integration of components within the Ariel AI Chip offers electrical engineers a robust platform for developing advanced AI systems, combining high processing power with efficient power management and signal integrity, suitable for a wide range of applications in the field of artificial intelligence.

    radicaldeepscale

    1 Comment

    1 Star


  • DCPS-5V

    DCPS-5V

    The Ariel AI chip prototype, designed for integration with Flux AI for advanced simulation and testing, incorporates a suite of electronic components optimized for high-performance computing applications. At the heart of this system lies a CPU with a radical transistor architecture, featuring a 4-core configuration and a clock speed of 2GHz, identified by part number CPU-RT-4C-2G. Power management is facilitated through a DC Power Supply, specified as DCPS-5V, ensuring a stable 5V supply to the system. The circuit's dynamic performance is modulated by two NPN transistors, NPN-TRANS-001 and NPN-TRANS-002, which, along with precision resistors RES-1K and RES-1K-002 (both 1kΩ), and a 10μF capacitor (CAP-10UF), form the critical signal processing path leading to the CPU. This configuration is designed to provide an efficient, reliable processing environment for AI computations, with an emphasis on minimizing latency and maximizing throughput. The Ariel AI chip's architecture, combining traditional components with an innovative CPU design, offers a versatile platform for developing advanced AI applications, reflecting a significant step forward in computational technology.

    radicaldeepscale

    1 Comment

    1 Star


  • RES-1K-002

    RES-1K-002

    The Ariel AI Chip, a pioneering component in the field of artificial intelligence hardware, integrates advanced features designed to enhance computational efficiency and AI processing capabilities. This chip is distinguished by its utilization of a quad-core CPU with a clock speed of 2GHz, operating on a radical transistor architecture that promises significant improvements in speed and power efficiency. Key components that constitute the Ariel AI Chip include a DC power supply with a 5V output (DCPS-5V), NPN transistors (NPN-TRANS-001 and NPN-TRANS-002) that serve as the fundamental switching elements, precision resistors (RES-1K and RES-1K-002) each with a resistance of 1kΩ, and a capacitor (CAP-10UF) rated at 10μF to stabilize voltage and filter noise. This chip is designed for integration into systems requiring advanced AI capabilities, offering a comprehensive solution for developers looking to leverage machine learning and artificial intelligence in their applications. With its innovative architecture and component selection, the Ariel AI Chip stands out as a versatile and powerful tool for a wide range of AI applications, from embedded systems to more complex computational platforms.

    radicaldeepscale

    1 Comment

    1 Star


  • NPN-TRANS-001

    NPN-TRANS-001

    The Ariel AI chip prototype is an advanced electronic component designed to enhance the capabilities of Flux AI systems through a sophisticated arrangement of transistors, resistors, capacitors, and a cutting-edge CPU. Key components include two NPN transistors (part numbers NPN-TRANS-001 and NPN-TRANS-002), which are essential for signal amplification, alongside precision resistors (RES-1K and RES-1K-002) each with a resistance of 1kΩ, and a capacitor (CAP-10UF) with a capacitance of 10μF, crucial for filtering and stabilizing the voltage supply. At the heart of the design is a revolutionary CPU (part number CPU-RT-4C-2G) featuring a quad-core setup with a clock speed of 2GHz, based on a radical transistor architecture, designed to deliver unparalleled computational performance for AI tasks. This component set is powered by a 5V DC power supply (DCPS-5V), ensuring a stable and efficient operation. The Ariel AI chip is engineered for high-speed, reliable performance in demanding AI applications, representing a significant advancement in electronic component design for artificial intelligence systems.

    radicaldeepscale

    1 Star


  • Zoophagous Beige Matter Compiler

    Zoophagous Beige Matter Compiler

    - ESP32 DevKitC V4 (microcontroller) - 2x BME280 sensors (temperature, humidity, pressure) - 8ch relay board with 12VDC relays (NO/NC SPDT) - 12VDC power supply - USB connectivity - Various components (resistors, caps, opto couplers, op-amps, motor drivers, multiplexers) - 2x SPDT relay boards (for fan fail-safe) - 4x 2ch bidirectional level controllers (3.3V to 5V) - ESP32 GPIO 21 (SCL) to BME280's SCL - ESP32 GPIO 22 (SDA) to BME280's SDA - ESP32 GPIO 5 (digital output) to 8ch relay board input - ESP32 GPIO 25 (PWM output) -> Fan PWM (0-255 value) - ESP32 GPIO 26 (PWM output) -> Light PWM (0-255 value) - ESP32 GPIO 34 (analog input) -> Tachometer input (0-4095 value, 12-bit ADC) - Add a 5V voltage regulator (e.g., 78L05) to power the ESP32 and other 5V components - Add a 3.3V voltage regulator (e.g., 78L03) to power the BME280 sensors and other 3.3V components - Include decoupling capacitors (e.g., 10uF and 100nF) to filter the power supply lines - Ensure proper grounding and shielding to minimize noise and interference -- Power supply: - VCC=12VD Available, to be used for LM358P - 5V voltage regulator (78L05) - VCC=5V, GND=0V - 3.3V voltage regulator (78L03) - VCC=3.3V, GND=0V - 3.3V voltage regulator (78L03) - VCC=3.3V, GND=0V - Fan PWM boost: - Input (3.3V PWM): 0-3.3V, frequency=20kHz - Output (5V PWM): 0-5V, frequency=20kHz - LM358P op-amp (unity gain buffer) - VCC=5V, GND=0V - R1=1kΩ, R2=1kΩ, R3=1kΩ, R4=1kΩ - C1=10uF (50V), D1=1N4007 - 0-10V signal conditioning: - Input (3.3V PWM): 0-3.3V, frequency=13kHz - Output (0-10V): 0-10V, frequency=13kHz - LM358P op-amp (non-inverting amplifier) - VCC=5V, GND=0V - R5=2kΩ, R6=1kΩ, R7=2kΩ, R8=1kΩ, R9=1kΩ, R10=2kΩ - C2=10uF (50V), R11=10kΩ (1%) ------------------------------------ Fan PWM Boost (3.3V to 5V): 1. ESP32 GPIO 25 (PWM output) -> R1 (1kΩ) -> VCC (3.3V) 2. ESP32 GPIO 25 (PWM output) -> R2 (1kΩ) -> Vin (LM358P) 3. LM358P (Voltage Follower): - VCC (5

    diamond91