• Complete Rose Antigravity Battle Room

    Complete Rose Antigravity Battle Room

    2 resistencias de 1K 2 resistencias de 1,8K 1 resistencia de 3,3K 1 resistencia de 10K 2 resistencias de 47K 2 preset de 100K (ver texto) 2 capacitores de 10nF 4 capacitores de 100nF 3 capacitores de 100uF 25V 1 diodo 1N4007 2 diodos 1N4148 1 led amarillo 3mm 1 led rojo 3mm 2 circuitos integrados 555 1 relé de 12V 2 conectores con bornes de dos vías 1 conector con bornes de 3 vías 1 circuito impreso

    haberstockmatias

    1 Star


  • 1N4007

    1N4007

    Diode Standard 1000 V 1A Through Hole DO-41 #commonpartslibrary #diode

    nagor11k

    7 Comments


  • Fast Silver Flubber

    Fast Silver Flubber

    Create a schematic diagram of an electric fence controller using the NE556 dual timer IC. The circuit must include all components with clear electronic symbols (resistors, capacitors, transistors, diode, relay) connected by lines as in a real circuit diagram. Specifications: 1. Power supply: - Vcc = +12V connected to pin 14 of the NE556. - Pin 1 of the NE556 to ground. 2. Timer A (active 10 seconds): - Pin 2 (Trigger A) receives a pulse from transistor Q2 (contact detector). - Pin 6 (Threshold A) connected to Pin 7 (Discharge A). - R1 = 1 MΩ between Pin 7 and +12V. - C1 = 10 µF between Pin 6 and ground. - Pin 3 (Out A) goes through a 4.7 kΩ resistor to the base of Q1 (BC547 NPN transistor). - Pin 3 also connected via a 100 nF capacitor to Pin 13 (Trigger B of Timer B). 3. Timer B (rest 10 seconds): - Pin 9 (Discharge B) and Pin 8 (Threshold B) connected together. - R2 = 1 MΩ between Pin 9 and +12V. - C2 = 10 µF between Pin 8 and ground. - Pin 12 (Out B) can be optionally used to block retrigger of Timer A. 4. Relay driver stage: - Q1 = BC547 NPN transistor. - Base connected through 4.7 kΩ resistor to Pin 3 (Out A). - Emitter to ground. - Collector connected to one side of the relay coil. - Other side of relay coil connected to +12V. - A diode 1N4007 placed in parallel with the relay coil (cathode to +12V, anode to collector of Q1). - Relay contacts switch the +12V supply to the electric fence energizer. 5. Contact detector: - Shunt resistor ≈0.1 Ω placed in series with the fence output. - Q2 = BC547 NPN transistor, base connected to the shunt, emitter to ground, collector to Pin 2 (Trigger A). - When current flows through the shunt, Q2 provides a trigger pulse to Timer A. Please draw the schematic in a standard style with components connected by straight lines, not in block diagrams. Show clear pin numbers of the NE556 and all external components.

    juan-zuar


  • Content Amaranth Tractor Beam

    Content Amaranth Tractor Beam

    +12V/24V (Llave de contacto) │ ├───▶ Pin 8 (VCC) y Pin 4 (Reset) del NE555 │ ├───▶ Potenciómetro (100kΩ) ───▶ R1 (10kΩ) ───▶ Pines 6 y 7 │ │ │ ▼ ├───▶ C1 (47µF) ───▶ GND │ │ │ └───▶ Pin 2 (Trigger) │ ├───▶ Pin 3 (Output) ───▶ R3 (1kΩ) ───▶ Puerta (G) del MOSFET │ │ │ │ ├───▶ R2 (220Ω) ───▶ LED rojo ───▶ GND │ │ │ ▼ │ MOSFET (5N60C) ───▶ Bobina del Relé ───▶ GND │ │ │ ▼ │ Bujía de precalentamiento │ │ │ ▼ │ +12V/24V (Batería) │ └───▶ D1 (1N4007) en paralelo con la bobina del relé.

    eduardoabeja


  • Prepared Salmon Liquid Breathing Apparatus

    Prepared Salmon Liquid Breathing Apparatus

    This project is focused on designing a highly efficient PCB for a switching power supply using a robust selection of electronic components. Our design leverages a flyback topology featuring a ferrite transformer (options EE25 or EE33), a PWM integrated circuit (TL494, SG3525, or UC3842), and a power MOSFET (IRF840 or a similar alternative) for effective high-voltage switching. Fast and reliable rectification is ensured by using a Schottky diode (MBR20100 or FR107) along with a rectifier bridge built from four 1N4007 diodes or a dedicated 4A bridge. Key stabilization and regulation components include the TL431 reference regulator and a Zener diode for precise voltage control in critical areas. For input and output filtering, the design incorporates electrolytic capacitors (470 µF, 25 V for output and 400 V, 100 µF for input) and ceramic capacitors (ranging from 1 nF to 100 nF) to limit high-frequency noise. Additional safety and operational features are provided by an NTC (soft-start thermistor) to prevent current spikes, various resistors (from 1 Ω to 100kΩ), an optocoupler (PC817) for signal isolation, a switch, and a protection fuse. Before moving forward with a finalized PCB layout and schematic details, we need to clarify a few design choices: 1. Transformer Choice: Would you prefer using the EE25 or the EE33 ferrite transformer variant as the heart of the switching power supply design? This detailed approach ensures that the power supply not only meets rigorous performance and safety standards but also supports a reliable and scalable solution for various electronic applications. #PCBDesign #SwitchingPowerSupply #Electronics #SMPS #PowerElectronics #FlybackConverter #CircuitDesign #ElectronicsComponents

    hola1233


  • 1N4001-E3/54

    1N4001-E3/54

    The Vishay General Semiconductor series, consisting of part numbers 1N4001 through 1N4007, comprises general purpose plastic rectifiers encapsulated in DO-41 (DO-204AL) packages. Designed to accommodate an average forward rectified current of 1.0 A across a range of maximum repetitive peak reverse voltages from 50 V (1N4001) up to 1000 V (1N4007), these devices offer engineers a versatile solution for rectification needs across various applications. They feature low forward voltage drop, low leakage current, and a high forward surge capability, making them well-suited for use in power supplies, inverters, converters, and freewheeling diodes applications. The series is distinguished by its capability to handle peak forward surge currents of 30 A for an 8.3 ms single half sine-wave and up to 45 A for square waveforms, providing robust performance in demanding environments. With a maximum operating junction temperature of 150 ℃ and compliant to RoHS standards, these rectifiers are optimized for commercial-grade applications where reliability and environmental compliance are critical. Their mechanical and electrical characteristics, including a high resistance to thermal and mechanical stress, make them a preferred choice for designers seeking components that deliver stable performance over a wide range of operating conditions.

    jbreidfjord-dev