Complete Rose Antigravity Battle Room
2 resistencias de 1K 2 resistencias de 1,8K 1 resistencia de 3,3K 1 resistencia de 10K 2 resistencias de 47K 2 preset de 100K (ver texto) 2 capacitores de 10nF 4 capacitores de 100nF 3 capacitores de 100uF 25V 1 diodo 1N4007 2 diodos 1N4148 1 led amarillo 3mm 1 led rojo 3mm 2 circuitos integrados 555 1 relé de 12V 2 conectores con bornes de dos vías 1 conector con bornes de 3 vías 1 circuito impreso... show more1 Star
P-001_AnandKumar_IOTSentinels
This Gerber file contains the necessary information for fabricating the PCB design of a Bluetooth-enabled headphone. The design includes multiple layers, showcasing the electrical connections and component placements on both the top and bottom layers. Top Layer (Copper traces and components): The top copper layer is primarily responsible for routing the signals from key components such as the ESP32 module, MAX98357A audio amplifier, and the microphone. The ESP32 module, responsible for Bluetooth communication, is positioned centrally to optimize signal flow and minimize interference. Decoupling capacitors (100nF) are placed near critical components to ensure signal stability and noise suppression. Audio signal paths, as well as power distribution, are carefully routed to prevent cross-talk and ensure high-quality sound. Bottom Layer (Copper traces): The bottom layer contains the ground plane and additional routing for power and signal connections. The charging module (TP4056) and voltage regulator (AMS1117) are placed to manage power distribution, ensuring stable battery charging and regulated output for the ESP32 and other components. Connections to external interfaces such as the MicroSD breakout and auxiliary input are routed efficiently to avoid conflicts. Additional Components: All critical components are labeled, including decoupling capacitors (100nF) and resistors where needed, as well as external interfaces like the MicroSD card breakout. Mounting holes are provided for secure installation in a headphone casing, ensuring the board can be integrated seamlessly into the final product. The PCB is designed to minimize noise, with short signal paths and proper grounding for high-fidelity audio performance. This Gerber file ensures accurate manufacturing by containing data for copper layers, silkscreen, solder mask, and drill files.... show more23 Comments
Decisive White Flux Capacitor
This project involves designing a complete schematic for a robotic arm controller based on the ESP32-C3 microcontroller, specifically using the ESP32-C3-MINI-1-N4 module. The design features a dual power input system and comprehensive power management, motor control, I/O interfaces, and status indicators—all implemented on a 2-layer PCB. Key Specifications: Microcontroller: • ESP32-C3-MINI-1-N4 module operating at 3.3V. • Integrated USB programming connections with reset and boot mode buttons. Power System: • Dual power inputs with automatic source selection: USB-C port (5V input) and barrel jack (6-12V input). • Power management using LM74610 smart diode controllers for power source OR-ing. • AMS1117-3.3 voltage regulator to deliver a stable 3.3V supply to the microcontroller. • Filter capacitors (10μF electrolytic and 100nF ceramic) at the input and output of the regulators. • Protection features including USBLC6-2SC6 for USB ESD protection and TVS diodes for barrel jack overvoltage protection. Motor Control: • Incorporates an Omron G5LE relay with a PC817 optocoupler and BC547 transistor driver. • Provides dedicated header pins for servo motors with PWM outputs. • Flyback diode protection implemented for relay safety. I/O Connections: • Header pins exposing ESP32-C3 GPIOs: Digital I/O (IO0-IO10, IO18, IO19) and serial communication lines (TXD0, RXD0), plus an enable pin. • Each I/O pin includes appropriate 10kΩ pull-up/pull-down resistors to ensure reliable performance. Status Indicators: • A power status LED with a current-limiting resistor. • A user-controllable LED connected to one of the GPIO pins. PCB Layout Requirements: • 2-layer PCB design with separate ground planes for digital and power sections. • Placement of decoupling capacitors close to power pins to reduce noise. • Adequate trace width for power lines to ensure efficient current flow. • Inclusion of mounting holes at the board corners for secure installation. • All components are properly labeled with correct values for resistors, capacitors, and other passive elements, following standard design practices for noise reduction, stability, and reliability. #RoboticArmController #ESP32C3 #SchematicDesign #PCBDesign #ElectronicsDesign #PowerManagement #MotorControl #EmbeddedSystems #IoT... show moreZoophagous Beige Matter Compiler
- ESP32 DevKitC V4 (microcontroller) - 2x BME280 sensors (temperature, humidity, pressure) - 8ch relay board with 12VDC relays (NO/NC SPDT) - 12VDC power supply - USB connectivity - Various components (resistors, caps, opto couplers, op-amps, motor drivers, multiplexers) - 2x SPDT relay boards (for fan fail-safe) - 4x 2ch bidirectional level controllers (3.3V to 5V) - ESP32 GPIO 21 (SCL) to BME280's SCL - ESP32 GPIO 22 (SDA) to BME280's SDA - ESP32 GPIO 5 (digital output) to 8ch relay board input - ESP32 GPIO 25 (PWM output) -> Fan PWM (0-255 value) - ESP32 GPIO 26 (PWM output) -> Light PWM (0-255 value) - ESP32 GPIO 34 (analog input) -> Tachometer input (0-4095 value, 12-bit ADC) - Add a 5V voltage regulator (e.g., 78L05) to power the ESP32 and other 5V components - Add a 3.3V voltage regulator (e.g., 78L03) to power the BME280 sensors and other 3.3V components - Include decoupling capacitors (e.g., 10uF and 100nF) to filter the power supply lines - Ensure proper grounding and shielding to minimize noise and interference -- Power supply: - VCC=12VD Available, to be used for LM358P - 5V voltage regulator (78L05) - VCC=5V, GND=0V - 3.3V voltage regulator (78L03) - VCC=3.3V, GND=0V - 3.3V voltage regulator (78L03) - VCC=3.3V, GND=0V - Fan PWM boost: - Input (3.3V PWM): 0-3.3V, frequency=20kHz - Output (5V PWM): 0-5V, frequency=20kHz - LM358P op-amp (unity gain buffer) - VCC=5V, GND=0V - R1=1kΩ, R2=1kΩ, R3=1kΩ, R4=1kΩ - C1=10uF (50V), D1=1N4007 - 0-10V signal conditioning: - Input (3.3V PWM): 0-3.3V, frequency=13kHz - Output (0-10V): 0-10V, frequency=13kHz - LM358P op-amp (non-inverting amplifier) - VCC=5V, GND=0V - R5=2kΩ, R6=1kΩ, R7=2kΩ, R8=1kΩ, R9=1kΩ, R10=2kΩ - C2=10uF (50V), R11=10kΩ (1%) ------------------------------------ Fan PWM Boost (3.3V to 5V): 1. ESP32 GPIO 25 (PWM output) -> R1 (1kΩ) -> VCC (3.3V) 2. ESP32 GPIO 25 (PWM output) -> R2 (1kΩ) -> Vin (LM358P) 3. LM358P (Voltage Follower): - VCC (5... show more