• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
@ramprakashvishnoi8 can you please fix this

What exactly needs to fixed here?
3y
@ramprakashvishnoi8 can you please fix this

1

3y
Someone is typing...
LCD 08*02
R3
Resistance
22 Ω
C7
Capacitance
100p F
B2
U8
U4
R6
Resistance
500 Ω
C2
Capacitance
0.01 F
C1
C4
Capacitance
0.01 F
C6
Capacitance
0.01 F
C1
A1
C1
Capacitance
2 F
R5
Resistance
500 Ω
A1
B1
R2
Resistance
22 Ω
BT1
R4
Resistance
500 Ω
C8
Capacitance
100p F
Q1
Resistance
10 kΩ
C5
Capacitance
0.01 F
D3
T1
D2
C3
Capacitance
0.01 F
A1
B2
B1
B2
D1
R1
Resistance
220 Ω
U7
U5
D1
Q2
U6

Bug Zapper Counter

Bug Zapper Counter
Description

Created
May 16th 2021
Last updated by ramprakashvishnoi8
3 years ago
1 Contributor(s)
ramprakashvishnoi8

Controls

Properties

Availability & Pricing

DistributorQty 1
Digi-Key$0.16–$1.93
LCSC$0.00–$0.20
Mouser$1.68

Assets

Simulation

µs

Simulation Speed

cuanta frecuencia bota
cuanta frecuencia bota
11mo
counter rf
1y
Based on the input information available, counting RF (Radio Frequency) signals directly is not typically straightforward, as it involves dealing with high-frequency signals that require specific circuitry for accurate measurement. However, Arduino has a frequency measurement library called "FreqCount" which can provide surprisingly high accuracy and resolution if the frequency is less than around 1 MHz.
Counting RF signals would involve counting the cycles of an RF signal over a period. This can be done using a frequency counter. Most frequency counters work by using a counter which accumulates the number of events (in this case, the pulse of the RF signal) and then displays a count of the events that occurred during the counting period.
At lower frequencies, the Arduino's digital inputs can count frequency directly by connecting the RF signal to an input pin. However, RF signals at higher frequencies (e.g., 2.4GHz WiFi) are too fast to be directly counted by a microcontroller like an Arduino. These signals are typically down-converted to lower, more manageable frequencies using mixer circuits before frequency counting.
For safety and accuracy, it might be useful to use an RF signal transformer or a DIY RF probe to couple and convert the RF signal to a level and impedance suitable for the Arduino.
Additionally, if you want to measure the frequency of an RF signal, you can use an RF frequency counter module, which makes this task easier. Some modules come with an interface that can be easily connected to Arduino or other microcontrollers.
Please provide more information about the specific RF signals you need to count (frequency, source, etc.), as well as more details about how you want to use this in your Bug Zapper Counter project. That way, I can provide more detailed and specific advice on how to achieve your project goals.
Source(s):
1y
projekt licznika impulsów drogą radiową arduino rf
1y
Liczenie impulsów drogą radiową za pomocą Arduino i modułu RF może być pewnym wyzwaniem ze względu na złożoność sygnałów radiowych. Aby zrealizować swój projekt, musisz zachować pewne szczegóły, takie jak częstotliwość, modulacja sygnału itp.
Oto przewodnik krok po kroku, jak tego dokonać:

  1. Zdobądź moduł odbiornika RF: Najpierw potrzebujesz odpowiedniej częstotliwości modułu odbiornika RF, które mogą odbierać sygnały RF i przekształcać je w sygnały cyfrowe, które Arduino może przetwarzać. Moduły takie jak XY-MK-5V (315MHz) lub XY-FST (433MHz) są powszechnie stosowane modułami RF dla Arduino.
  2. Podłącz moduł odbiornika RF do Arduino: Moduły te zwykle mają 4 piny: VCC (alimentacja), GND, Data (sygnał wyjściowy) i Antenna (wejście anteny). VCC powinno być podłączone do 5V na Arduino, GND do GND, a Data do jednego z cyfrowych portów wejścia Arduino. Wejście anteny jest zwykle połączone z zewnętrzną anteną, aby poprawić odbierane sygnały.
  3. Programuj Arduino do liczenia impulsów: Teraz możesz napisać lub zastosować istniejący kod dla Arduino, aby pobrać dane z portu wejściowego i zwiększyć licznik za każdym razem, gdy jest wykrywany nowy impuls. Funkcja digitalRead() w Arduino można używać do odczytania stanu na pinie wejściowym.
Przykładowy kod dla Arduino:

C


const int rfPin = 2;  // Port wejściowy dla odbiornika RF 
volatile int pulseCount = 0;  // Licznik impulsów  

void setup() {   
  pinMode(rfPin, INPUT);
  attachInterrupt(digitalPinToInterrupt(rfPin), countPulse, RISING);  // Przerwanie dla detekcji impulsów
  Serial.begin(9600);
} 

void loop() {
  Serial.println(pulseCount);  // Wyświetl liczbę impulsów
  delay(1000);
} 

void countPulse() {
  pulseCount++; // Zwiększenie licznika impulsów
} 
Ten kod sprawia, że Arduino zlicza każdy wykryty impuls i wyświetla liczbę impulsów na terminalu szeregowym co sekundę.
Proszę pamiętać, że każdy projekt RF jest unikalny i może wymagać strojenia i dostosowywania w zależności od specyfikacji sprzętowych, środowiska i wymagań. Moja odpowiedź jest tylko przykładem ogólnej metody.
Source(s):
1y
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reac...
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reach me at any time by tagging me on comments or in the chat with my handle, @copilot.
1y
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Designator
NPN Transistor Q2
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.