• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
TFT1
U3
U1
U2
Q1
BZ2
US1
Q2
RPi1

IoT Devices and Wearables (Edge Computing) | Copilot Preset

IoT Devices and Wearables (Edge Computing) | Copilot Preset
Description

Created
September 3rd 2024
Last updated by marisolll
5 months ago
1 Contributor(s)
marisolll

Controls

Properties

Software
Arduino
Connectivity
USB, WiFi, Bluetooth
Wireless Protocol
Wi-Fi, Bluetooth, LoRaWan
Operating Voltage
1.8V to 5V
Operating Humidity
10 to 90%
Compliance
RoHS, FCC, CE
Operating Temperature Range
-10°C to 70°C
Antenna
PCB Trace
Human Interface
Display and Buttons
Reliability
20,000 hrs
Life Cycle Expectancy
10 years
Form Factor
Wearables
Number of sensors
2
Number of output relay
4
Domain Application
Consumer Electronics

Availability & Pricing

DistributorQty 1
Arrow$0.04–$0.59
Digi-Key$0.03–$0.90
LCSC$11.76–$12.44
Mouser$6.83–$7.45
Verical$0.03–$7.68

Assets

Simulation

µs

Simulation Speed

Hi! I’m Copilot, I’m here to help you design your hardware projects. Ask me anyt...
Hi! I’m Copilot, I’m here to help you design your hardware projects. Ask me anything:
@copilot can you partner up with me to design a PCB?
@copilot give me a few architecture options for an affordable Al pendant using mermaid diagrams.
@copilot how can I build a schematic with Flux?
To learn more, check out Getting Started with Copilot.
5mo
has un simulador de kilometraje en arduino que su salida sea de 0 hz a 571hz y que su voltaje sea de 2.4 cuando este en0 hz y en 2.1en 571hz utllizando un led y un poteciometro
5mo
que muestre el kilometrje de 0 a 120 de kilometrje
5mo
que el led este a du maximo brillo
5mo
Sure, a mileage simulator using Arduino with the specified output frequency and voltage can be achieved with a combination of pulse width modulation (PWM) for controlling the LED, and an analog output to indicate the frequency. Here's a conceptual breakdown of how you can achieve this.
Components Needed:
  1. Arduino (e.g., Arduino Uno)
  2. LED
  3. Potentiometer
  4. Resistors (as needed for current limiting)
  5. Capacitors (for filtering, if necessary)
  6. Breadboard and Wires (for prototyping)
Circuit Diagram:

Markdown


```mermaid
graph TD;
    POT1 -->|Analog| Arduino A0;
    Arduino D8 -->|PWM| LED1;
    LED1 --> Resistor R1;
    R1 --> GND;

### Explanation:
1. **Potentiometer (POT1)**: This is used to simulate the sensor input, where the wiper (middle terminal) goes to an analog pin (A0) on the Arduino. The other two terminals are connected to 5V and GND respectively.
2. **LED1**: Connected to one of the PWM-capable digital pins on the Arduino (e.g., D8). A resistor (R1) is used in series to limit the current through the LED.

### Arduino Code:
You can use the following Arduino code to create the specified frequency and voltage outputs:

```cpp
const int potPin = A0;     // Pin for potentiometer output
const int ledPin = 8;      // Pin for LED (PWM output)

const float minFreq = 0.0;     // Minimum frequency in Hz
const float maxFreq = 571.0;   // Maximum frequency in Hz

void setup() {
  pinMode(ledPin, OUTPUT);
}

void loop() {
  int potValue = analogRead(potPin);  // Read potentiometer value
  float voltage = map(potValue, 0, 1023, 240, 210) / 100.0;  // Map pot value to voltage (2.4V to 2.1V)
  float freq = map(potValue, 0, 1023, minFreq * 100, maxFreq * 100) / 100.0;  // Map pot value to freq (0Hz to 571Hz)
  
  // Generate PWM signal based on frequency
  int period = 1000000 / freq;  // Period in microseconds
  int onTime = (period * voltage) / 5.0; // On time proportional to voltage (duty cycle)
  int offTime = period - onTime; // Off time
  
  digitalWrite(ledPin, HIGH);
  delayMicroseconds(onTime);
  digitalWrite(ledPin, LOW);
  delayMicroseconds(offTime);
}
This code maps the potentiometer reading to both the frequency and voltage output requirements. The LED will blink with a frequency between 0 Hz and 571 Hz, and the analog output will range from 2.4V to 2.1V.
You can adjust the map function parameters and PWM pin as needed. Additionally, use a low-pass filter if you require a smoother DC voltage output. If you have specific requirements or additional constraints, feel free to share!
5mo
Component List:
  1. Arduino Uno
  2. LED
  3. Potentiometer (10kΩ)
  4. Resistor (330Ω for the LED)
  5. Optional: Capacitors for filtering
Circuit Diagram:

Markdown


```mermaid
graph TD;
    POT1 -->|Analog| Arduino A0;
    Arduino D8 -->|PWM| LED1;
    LED1 --> Resistor R1;
    R1 --> GND;

### Arduino Code:
Here's the code that will create the mileage simulator:

```cpp
const int potPin = A0;     // Pin for potentiometer output
const int ledPin = 8;      // Pin for LED (PWM output)
const int minMileage = 0;  // Min mileage in km/h
const int maxMileage = 120; // Max mileage in km/h

void setup() {
  pinMode(ledPin, OUTPUT);
  Serial.begin(9600);    // To display the mileage on the serial monitor
}

void loop() {
  int potValue = analogRead(potPin); // Read potentiometer value
  float mileage = map(potValue, 0, 1023, minMileage*100, maxMileage*100) / 100.0; // Map pot value to mileage
  
  // Update frequency (0 to 571 Hz)
  float frequency = map(potValue, 0, 1023, 0, 571);
  
  // Voltage (2.4V at 0Hz to 2.1V at 571Hz)
  float voltage = 2.4 - (2.4 - 2.1) * (frequency / 571);

  // Generate PWM signal based on frequency
  int period = (frequency == 0) ? 0 : 1000000 / frequency; // Period in microseconds
  int highTime = (period * voltage) / 5.0; // On time proportional to voltage (duty cycle)
  int lowTime = period - highTime; // Off time
  
  if (frequency == 0) {
    digitalWrite(ledPin, LOW); // LED off at 0 Hz
  } else {
    digitalWrite(ledPin, HIGH);
    delayMicroseconds(highTime);
    digitalWrite(ledPin, LOW);
    delayMicroseconds(lowTime);
  }
  
  // Print the mileage to the Serial Monitor
  Serial.print("Mileage: ");
  Serial.print(mileage);
  Serial.print(" km/h, Frequency: ");
  Serial.print(frequency);
  Serial.print(" Hz, Voltage: ");
  Serial.print(voltage);
  Serial.println(" V");
  
  delay(100); // Adjust for your preferred refresh rate
}
Explanation:
  1. Potentiometer (POT1): The potentiometer is used to simulate the varying input where the wiper goes to the analog pin (A0) on the Arduino. The other terminals are connected to 5V and GND respectively.
  2. LED1: Connected to one of the PWM-capable digital pins on the Arduino (e.g., D8). A resistor (R1) is used in series to limit the current through the LED.
How It Works:
  • The potentiometer reading is used to map the desired mileage (0 to 120 km/h).
  • The mapped mileage is used to compute the corresponding frequency (0 to 571 Hz) and voltage (2.4V to 2.1V).
  • The LED is modulated via PWM based on the computed frequency and voltage. The duty cycle is proportional to the voltage needed.
  • Mileage, Frequency, and Voltage values are printed to the Serial Monitor for observation.
Additional Considerations:
  • You may add capacitors between the LED and ground to smooth out the PWM signal and create a more stable analog voltage if needed.
  • Adjust the delay in the loop() function to control how often the Serial Monitor updates.
With these adjustments, you can achieve a mileage simulator that meets your specified requirements.
5mo
Component List:
  1. Arduino Uno
  2. LED
  3. Potentiometer (10kΩ)
  4. Resistor (330Ω for the LED)
  5. Optional: Capacitors for filtering
Circuit Diagram:

Markdown


```mermaid
graph TD;
    POT1 -->|Analog| Arduino A0;
    Arduino D8 -->|PWM| LED1;
    LED1 --> Resistor R1;
    R1 --> GND;

### Arduino Code:
Here's the code that will create the mileage simulator:

```cpp
const int potPin = A0;     // Pin for potentiometer output
const int ledPin = 8;      // Pin for LED (PWM output)
const int minMileage = 0;  // Min mileage in km/h
const int maxMileage = 120; // Max mileage in km/h

void setup() {
  pinMode(ledPin, OUTPUT);
  Serial.begin(9600);    // To display the mileage on the serial monitor
}

void loop() {
  int potValue = analogRead(potPin); // Read potentiometer value
  float mileage = map(potValue, 0, 1023, minMileage*100, maxMileage*100) / 100.0; // Map pot value to mileage
  
  // Update frequency (0 to 571 Hz)
  float frequency = map(potValue, 0, 1023, 0, 571);
  
  // Voltage (2.4V at 0Hz to 2.1V at 571Hz)
  float voltage = 2.4 - (2.4 - 2.1) * (frequency / 571);

  // Generate PWM signal based on frequency
  int period = (frequency == 0) ? 0 : 1000000 / frequency; // Period in microseconds
  int highTime = (period * voltage) / 5.0; // On time proportional to voltage (duty cycle)
  int lowTime = period - highTime; // Off time
  
  if (frequency == 0) {
    digitalWrite(ledPin, LOW); // LED off at 0 Hz
  } else {
    digitalWrite(ledPin, HIGH);
    delayMicroseconds(highTime);
    digitalWrite(ledPin, LOW);
    delayMicroseconds(lowTime);
  }
  
  // Print the mileage to the Serial Monitor
  Serial.print("Mileage: ");
  Serial.print(mileage);
  Serial.print(" km/h, Frequency: ");
  Serial.print(frequency);
  Serial.print(" Hz, Voltage: ");
  Serial.print(voltage);
  Serial.println(" V");
  
  delay(100); // Adjust for your preferred refresh rate
}
Explanation:
  1. Potentiometer (POT1):
    • The potentiometer is used to simulate the varying input where the wiper goes to the analog pin A0A0 on the Arduino. The other terminals are connected to 5V and GND respectively.
  2. LED1:
    • Connected to one of the PWM-capable digital pins on the Arduino (e.g., D8D8). A resistor R1R1 is used in series to limit the current through the LED.
How It Works:
  • The potentiometer reading is used to map the desired mileage (0 to 120 km/h).
  • The mapped mileage is used to compute the corresponding frequency (0 to 571 Hz) and voltage (2.4V to 2.1V).
  • The LED is modulated via PWM based on the computed frequency and voltage. The duty cycle is proportional to the voltage needed.
  • Mileage, Frequency, and Voltage values are printed to the Serial Monitor for observation.
Additional Considerations:
  • You may add capacitors between the LED and ground to smooth out the PWM signal and create a more stable analog voltage if needed.
  • Adjust the delay in the loop() function to control how often the Serial Monitor updates.
With these adjustments, you can achieve a mileage simulator that meets your specified requirements.
5mo
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Designator
Ruleset
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.