• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
are there any issues in this project?

@copilot are there any issues in this project?
11mo
Your project looks quite basic at the moment. It includes a push-button switch with two pins labeled P1 and P2, but it does not include any circuitry or connections, and there are a few things to address:
Issues:
  1. Incomplete Circuit: The project only has two pins (P1 and P2) with unspecified functions. There are no connections or components other than the push button.
  2. Designator Prefix Misused: The designator prefix is usually used to standardize component labels (e.g., SW1, SW2 for switches). You might want to correct the designator prefix for better clarity.
  3. Manufacturer Information: You mentioned the manufacturer "OMRON" with the value 1, but there's no further context or component selection from OMRON.
Recommendations:
  • Define Component Functions: Clearly define what P1 and P2 represent. Typically, a push button would have more precise pin definitions and connections (e.g., connect to a microcontroller input, a resistor, and ground).
  • Basic Schematic: Create a basic circuit using the push button. For example, connect it to a microcontroller or another part of your schematic:
    • Connect P1 to one terminal of the switch.
    • Connect P2 to the other terminal of the switch.
    • Optionally, add pull-up or pull-down resistors to ensure there is a defined logic level when the button is not pressed.
Example Schematic:
Here is an example setup for a basic push-button circuit:
  • Push Button (Assume P1 and P2 are linked to the switch terminals):
    • Connect P1 to a resistor R1:1R1:1.
    • Connect R1:2R1:2 to the ground.
    • Connect P2 to an input pin of a microcontroller MCU:PINMCU:PIN.
  • Components to consider:
    • Resistor R1R1: A typical pull-down resistor value might be 10kΩ10k\Omega.
    • Microcontroller MCUMCU: For illustration, let's assume a pin (e.g., PINPIN) on a microcontroller.
Updated Connections:
  • Connect P1 to R1:1R1:1.
  • Connect R1:2R1:2 to GND.
  • Connect P2 to MCU:PINMCU:PIN.
Would you like to create a simple schematic with these examples? If there's anything specific you want to add or modify, let me know!
11mo
Someone is typing...
led rojo

Poner una fuente de tension
1y
1y
Entiendo que quieres agregar un LED rojo a tu proyecto. Los LEDs son componentes muy útiles y se usan en una gran variedad de aplicaciones para indicar estados, iluminar áreas y más.
Primero, necesitarás seleccionar un LED rojo adecuado para tu diseño. Los LEDs vienen en varias formas y tamaños, y los dos factores clave a considerar son la tensión y la corriente. Usualmente, un LED rojo opera alrededor de 2V y 20mA.
Aquí hay una descripción general de cómo puedes agregarlo a tu diseño en Flux:
  1. Añade el LED a tu proyecto: Busca un "LED rojo" en la biblioteca de componentes de Flux y arrástralo a tu diseño.
  2. Añade una resistencia: Los LEDs necesitan una resistencia en serie para limitar la corriente a través de ellos. Suponiendo que estás alimentando tu diseño con una fuente de 5V, necesitarás una resistencia de aproximadamente 150 ohmios. Localiza un "Resistor" en la biblioteca de componentes de Flux, y selecciona o escribe 150 en la caja de parámetros.
  3. Conecta la resistencia y el LED: Conecta la resistencia en serie con el LED rojo. En la práctica, el terminal positivo del LED (ánodo) se conecta al lado de la resistencia que está conectado a la fuente de alimentación (5V). El terminal negativo del LED (cátodo) se conecta al lado de la resistencia que está conectado a tierra.
  4. Conecta el LED y la resistencia al interruptor: El lado de la resistencia que está conectada al LED debe estar conectada al terminal del interruptor (por ejemplo, P1.1)
Este es un resumen de cómo puedes agregar un LED rojo a tu diseño en Flux. Espero que esto te sea útil! Recuerda que estos son solamente consejos generales y la implementación exacta dependerá de las necesidades y especificaciones exactas de tu proyecto.
1y
Someone is typing...
5
3 D Cell Batteries / Vertical Position.

como relizar una placa para un semsfor con 555
1y
Para realizar un circuito de semáforo utilizando el temporizador 555 necesitaremos los siguientes componentes:
  1. IC 555 Timer
  2. Resistor (R1, R2, R3)
  3. Capacitores (C1)
  4. LEDs (D1, D2, D3) que representan las luces de semáforo verde, amarillo y rojo respectivamente
  5. Transistores (Q1, Q2, Q3) para controlar los LEDs
Aquí te dejo un esquema básico para conectar estos componentes:
  1. Primero, configura el 555 en un circuito astable. Para hacer esto:
    • Conectar 555:Pin 4 (Reset) y 555: Pin 8 (VCC) a la fuente de alimentación.
    • Conectar 555:Pin 1 (Ground) al suelo (0V).
    • Conectar C1:Pin 1 a 555:Pin 2 (Trigger) y 555:Pin 6 (Threshold)
    • Conectar R1:Pin 1 a 555:Pin 7 (Discharge) y R2:Pin 1.
    • Conectar R1:Pin 2 y 555:Pin 8 (VCC)
    • Conectar R2:Pin 2 y 555:Pin 6 (Threshold).
  2. Conecta los emisores de los transistores al suelo.
    • Conectar Q1:E, Q2:E, y Q3:E al suelo.
  3. Conecta las bases de los transistores a las salidas de los divisores de voltaje asociados.
    • Conectar R3:Pin 1 a Q1:B, R4:Pin 1 a Q2:B, y R5:Pin 1 a Q3:B.
  4. Conectar los LEDs a los colectores de los transistores.
    • Conectar D1:Pin 1 a Q1:C, D2:Pin 1 a Q2:C, y D3:Pin 1 a Q3:C.
  5. Conectar el otro pin de cada LED a la fuente de alimentación.
Este es solo un ejemplo básico. Las resistencias y los capacitores se deben seleccionar para obtener la temporización deseada. También es posible agregar una etapa de flip-flop para controlar cual LED está encendido en un momento dado.
Por favor, nota que los puntos de conexión exactos citados pueden variar en función de la IC 555 u otros componentes específicos que estés utilizando. Sería útil tener las hojas de datos de los componentes a mano para verificar. También es importante recordar que este circuito podría no ser el ajuste correcto si estás buscando un comportamiento de semáforo más complejo.
Por último, una vez que tengas el circuito en una placa de prototipos (breadboard) y funcione como deseas, puedes usar Flux para diseñar el esquema real y la la placa de PCB.
Recuerda que siempre es necesario revisar y testear tu circuito. Si tienes algún problema, estaré encantado de ayudarte.
1y
3 D Cell Batteries / Vertical Position.
1y
Someone is typing...
3
Check that none of the unconnected pins require pull-up or pull-down resistors t...

1y
@copilot Check that none of the unconnected pins require pull-up or pull-down resistors to ensure proper function.
1y
Absolutely, we need more information about the components connected to the pins P1 and P2 in order to provide an accurate answer. However, generally speaking:
  1. If the pins are GPIO (General Purpose Input/Output) pins of a microcontroller, pull-up or pull-down resistors may be required to ensure that they're not floating when not connected. The exact need would depend on the microcontroller specifications and the rest of your circuit.
  2. If the pins are part of an OMRON push button, these components typically don't need pull-up or pull-down resistors.
Without specific details on the microcontroller or other components connected to these pins, my assumptions could be inaccurate. Please let me know if you can provide more details about your components, so I can give a more accurate answer.
1y
Someone is typing...
4
list all P2 pins in a table format. For each pin provide its pin number, pin nam...

@copilot list all P2 pins in a table format. For each pin provide its pin number, pin name and function.
10mo
Based on the information provided, here are the details for the pin of the connector $P2$:

Table


Pin NumberPin NameFunction
3UnspecifiedUnspecified
If this information is not detailed enough or if you can provide more specifics about your requirement, I can help you further refine or identify the pin functions.
10mo
Someone is typing...
11
puedes hacer un circuito de compuerta not conectado a un foco led con entrada de...

@copilot puedes hacer un circuito de compuerta not conectado a un foco led con entrada de voltaje 9 v
1y
Claro, puedo ayudarte a diseñar un circuito simple con una compuerta NOT (inversora) que controle un LED utilizando una alimentación de 9V. Para este diseño, vamos a suponer que usaremos:
  1. Una compuerta NOT estándar, como la que se encuentra en la familia de circuitos integrados 74LS04.
  2. Un LED estándar con un voltaje directo típico de 2V y una corriente de funcionamiento de 20mA.
  3. Una resistencia para limitar la corriente a través del LED.
  4. Un voltaje de alimentación de 9V.
Cálculo de la resistencia
Para calcular la resistencia necesaria para limitar la corriente a través del LED a 20mA dado un voltaje de alimentación de 9V, usaremos la ley de Ohm. Suponiendo que el voltaje de salida de la compuerta NOT es lo suficientemente cercano a 9V cuando está en estado alto, tenemos:
Vfuente=9VV_{fuente} = 9V VLED=2VV_{LED} = 2V ILED=20mA=0.02AI_{LED} = 20mA = 0.02A
La caída de voltaje a través de la resistencia será la diferencia entre el voltaje de la fuente y el voltaje del LED:
VR=VfuenteVLED=9V2V=7VV_{R} = V_{fuente} - V_{LED} = 9V - 2V = 7V
Utilizando la ley de Ohm para calcular el valor de la resistencia:
R=VRILED=7V0.02A=350ΩR = \frac{V_{R}}{I_{LED}} = \frac{7V}{0.02A} = 350\Omega
Un valor estándar cercano sería $ 360\Omega $.
Esquemático sugerido
  • Componentes:
    • CI1: 74LS04 (Compuerta NOT)
    • R1: $ 360\Omega $ (resistencia para limitar la corriente a través del LED)
    • LED1: LED estándar
    • Fuente de alimentación: 9V
  • Conexiones:
    • Conecte el pin 14 (Vcc) del 74LS04 al polo positivo de la fuente de alimentación (9V).
    • Conecte el pin 7 (GND) del 74LS04 al polo negativo de la fuente de alimentación.
    • Conecte una entrada de la compuerta NOT (por ejemplo, pin 1) al polo positivo de la fuente de alimentación para que la salida (pin 2) esté normalmente en estado bajo, y sea alta sólo cuando la entrada esté baja.
    • Para el LED:
      • Conecte el ánodo del LED1 a través de R1 (360Ω) al pin 2 de CI1 (salida de la compuerta NOT).
      • Conecte el cátodo de LED1 al polo negativo de la fuente de alimentación.
Este es un esquema básico para controlar un LED con una compuerta NOT y una fuente de alimentación de 9V. Recuerde que es importante verificar las hojas de datos de los componentes específicos que está utilizando para adaptar correctamente los valores de los componentes, especialmente la resistencia, según las necesidades de su LED y la lógica de salida de la compuerta NOT.
1y
Someone is typing...
7
how do I use Flux?

@copilot how do I use Flux?
1y
Flux.ai is an online electronics CAD program where you can design electrical schematics and lay out PCBs. The tool is browser-based and does not require any installation. Here are some basic steps to use Flux:
  1. Create an account: To start using Flux, you need to create an account on the Flux website.
  2. Create or import a project: After logging in, you can create a new project or import an existing one. Flux supports different design file formats for import/export including Gerber, KiCAD, etc.
  3. Design a schematic: Flux's schematic editor allows you to add and connect electronic components to form a circuit schematic. Browse or search through the extensive component library to add components to your project.
  4. Layout PCB: Once the schematic is complete, switch to PCB layout mode to design the physical layout of your circuit. Arrange components on your board and route connections between them based on your schematic.
  5. Verify and export: When your design is finished, you can use Flux's design rule check (DRC) and electrical rule check (ERC) features to validate your design, and then export your PCB layout in the file format suitable for your PCB manufacturer.
Remember that when I suggest specific connections on your schematic, you can have me do those connections for you by clicking on the "Take Action" button[1].
If you are new to Flux, I suggest going through the tutorials and help documents available on the Flux website. This will give you an in-depth understanding of how to use the tool. You can also explore the library of video tutorials, crash courses, and recorded events on YouTube[2], [3].
If you run into any issues or have questions, you can connect with the Flux community on Slack for support[4].
And remember, Flux is built for collaboration, so it can support workflows found in larger engineering organizations as well[5]. Enjoy designing with Flux.ai!
1y
Someone is typing...
6
create a high level mermaid block diagram of this project. Include key component...

@copilot create a high level mermaid block diagram of this project. Include key component's manufacturer part number in each block whenever possible.
11mo
Sure, I will create a high-level Mermaid diagram for your project including the key components and their manufacturer part numbers. Here it is:

Image


Push Button Circuit
SW: Push Button Manufacturer: OMRON
P2: Pin Header Pin Number: 3
P1: Pin Header Pin Number: 1
In this diagram:
  • SW refers to the push button switch with the manufacturer name OMRON.
  • P2 and P1 refer to pin headers with unspecified pin types.
If you have specific manufacturer part numbers, we can include those as well. For now, I've assumed the manufacturer name as OMRON based on your provided details. Let me know if you need any changes or additional details!
11mo
Someone is typing...
9
P2
P1

Push Button

Push Button
Description

Created
Last updated by jharwinbarrozo
1 Contributor(s)
jharwinbarrozo

Controls

Momentary Switch

Properties

Part Type
Switch
Manufacturer Part Number
B3FS-1050P
Manufacturer Name
Designator Prefix
SW

Availability & Pricing

DPNStockQty 1
322K–29K$1.24525–$2.49
10$3.3508
19.6K$1.49

Assets

Simulation

µs

Simulation Speed

Untitled Thread

crear una placa madre donde va estar conectada a una plataforma DOF 6v con una interfas de videojuegos

Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports issues with Auto-Layout if Copilot cannot route something or must ignore a configuration.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.