• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
please explain what D2, C1, D4, D3, D1, R1, V1 do.

@copilot please explain what D2, C1, D4, D3, D1, R1, V1 do.
5mo
Sure, let's go through the components in your full-wave rectifier project:

  1. V1 (Voltage Source)

    • Role: Provides the AC voltage input to the circuit.
    • Properties: Peak Voltage = 5V, Frequency = 400Hz, Duty Cycle = 50%, DC Offset = 0V.
  2. D1, D2, D3, D4 (Diodes)

    • Role: Act as rectifiers in the bridge rectifier configuration. They convert the AC voltage from the input (V1) into pulsating DC voltage.
    • Properties: Breakdown Voltage = 50V, Series Resistance = 0.0286Ω, Saturation Current = 1.88e-9A, Emission Coefficient = 2.00.
    • Specific Connections:
  3. C1 (Capacitor)

    • Role: Acts as a filter capacitor to smooth out the pulsating DC output from the rectifier into a more steady DC voltage.
    • Properties: Capacitance = 100000uF.
  4. R1 (Resistor)

    • Role: Represents the load resistor where the rectified and filtered DC voltage is applied.
    • Properties: Resistance = 220 Ω.
Here’s how they all work together:
Functioning of a Full-Wave Rectifier Circuit

  1. Input AC Voltage (V1):

    • The AC voltage source, V1, provides the alternating current that needs to be rectified.
  2. Bridge Rectifier (Diodes D1 to D4):

    • During the positive half cycle of the input AC voltage, diodes D1 and D2 conduct, allowing current to pass through and blocking the opposite current.
    • During the negative half cycle, diodes D3 and D4 conduct, allowing current to pass through in the same direction as during the positive half cycle.
  3. Filtering (Capacitor C1):

    • The capacitor, C1, charges to the peak of the rectified voltage and discharges when the rectified voltage drops. This action smoothens out the pulsating DC voltage.
  4. Load Resistor (R1):

    • The smoothed DC voltage is then applied across the load resistor, R1, which represents any device that will use the rectified DC voltage.
Net Connections in the Schematic
Feel free to ask if you need further clarification or any other details!
5mo
Someone is typing...
This is dope

Hey Brooks 👋
3y
This is dope
3y
Someone is typing...
1
recommend a replacement for V1.

@copilot recommend a replacement for V1.
9mo
Given the properties of V1 you've described in your project, it's acting as an AC voltage source with the following characteristics:

  • Peak Voltage: $5V$
  • Frequency: $400Hz$
  • DC Offset: $0V$
  • Duty Cycle: $50%$
Considering you're designing a basic full-wave rectifier with a bridge configuration and a filtering capacitor, the main requirements for the AC voltage source are its ability to provide the necessary peak voltage and frequency to test the rectification and filtering capabilities of your circuit.
Replacement Recommendation:
A suitable replacement for V1 in this scenario could be any function generator that can output a sine wave meeting or exceeding the original specifications. However, if you're looking for a more specific component suggestion, we need to consider a component that is not only capable of generating the necessary waveform but is also commonly accessible for such applications.
Assumption: Since this is a basic full-wave rectifier circuit, the priority would be to find a replacement that offers simplicity, availability, and the capability to adjust output parameters as needed.
Suggested Replacement:
Consider using a programmable function generator IC, such as the Analog Devices AD9833. This component is capable of generating sine, triangular, and square waveforms over a 0 MHz to 12.5 MHz range. You would need to configure it for your specific needs ($5 V$ peak and $400 Hz$ for this project).
Key Features of the AD9833:

  • Programmability via SPI (Serial Peripheral Interface), allowing adjustments to the output waveform properties as needed.
  • Capability to generate sine, triangular, and square waves.
  • Wide frequency range: 0 MHz to 12.5 MHz, covering your requirement of $400Hz$ easily.
Connection Summary:

  • You would replace V1 with the AD9833 and configure it through an MCU (microcontroller unit) or a similar controlling device to output a $400 Hz$, $5V$ peak sine wave.
  • Connect the output of the AD9833 to where V1's P1 and P2 are currently connected in your circuit, ensuring you're also accounting for any necessary level shifting or amplification to achieve the $5V$ peak output if the AD9833's output does not meet this requirement directly.
Note: The AD9833 output voltage might not directly reach $5V$ peak without additional circuitry, so you might need an amplifier circuit to achieve the exact output requirements. Also, ensure that the power supply for the AD9833 and any additional circuitry meets the voltage and current requirements for your setup.
This recommendation assumes access to basic microcontroller programming capabilities and the need for a versatile, programmable signal source in your project. Adjustments to the component choice may be necessary based on your specific constraints and available resources.
9mo
Someone is typing...
4
create a high level mermaid block diagram of this project. Include key component...

@copilot create a high level mermaid block diagram of this project. Include key component's manufacturer part number in each block whenever possible.
2mo
Sure! Here's a high-level mermaid block diagram of your project based on the information provided. I'll include the key components and their designators:
Explanation:

  • V1 represents the AC voltage source.
  • D1, D2, D3, and D4 are diodes forming a full-wave bridge rectifier.
  • C1 is the filtering capacitor to smooth the rectified output.
  • R1 is used to represent the load.
Please let me know if you need any more details or adjustments!
2mo
Someone is typing...
7
New Comment

Someone is typing...
3
explain this project.

@copilot explain this project.
2mo
This project is a basic full-wave rectifier circuit using a bridge of diodes and a filtering capacitor. Here's an overview of how it is structured:
Components

  • Diodes (D1, D2, D3, D4):

    • There are four diodes in this project, each with a breakdown voltage of 50 volts.
    • The diodes are used to form a bridge rectifier, which converts AC (alternating current) to DC (direct current).
  • Capacitor C1C1:

    • This capacitor has a capacitance of 100,000 microfarads (100,000µF).
    • It helps in smoothing or filtering the output of the rectifier to provide a more stable DC voltage.
  • Resistor R1R1:

    • This resistor has a resistance of 220 ohms.
    • It serves as a load or can be used for further filtering or protection purposes.
  • Voltage Source V1V1:

    • It provides an AC voltage with a peak of 5 volts, frequency of 400 Hz, and a duty cycle of 50%.
    • Acts as the input AC signal for the rectifier circuit.
Circuit Functionality

  1. AC Input: V1V1 provides the AC voltage to the circuit.
  2. Bridge Rectifier: The four diodes (D1D1, D2D2, D3D3, D4D4) are configured in a bridge topology to convert AC to DC. Diodes are arranged such that they allow both halves of the AC waveform to pass through the capacitor.
  3. Filtering: The capacitor C1C1 smooths out the ripples in the rectified voltage, providing a more constant DC output.
  4. Output: The DC voltage appears across the resistor R1R1, which can be a load.
Net Connections

  • Net (R1 - P2): Connects R1R1 pin P2 with the cathodes of diodes D2D2 and D4D4 and the anode of capacitor C1C1.
  • Net (D4 - A): Connects the anode of diode D4D4 with the cathode of diode D3D3.
  • Net (D2 - A): Connects the anode of diode D2D2 with the cathode of diode D1D1.
  • Net (D3 - A): Connects the anode of diode D3D3, the cathode of capacitor C1C1, pin P1 of resistor R1R1, and the anode of diode D1D1.
This circuit will effectively transform an AC input into a DC output, typically used in power supply applications.
2mo
Someone is typing...
6
create a high level mermaid block diagram of this project. Include key component...

@copilot create a high level mermaid block diagram of this project. Include key component's manufacturer part number in each block whenever possible.
2mo
To create a high-level block diagram of your full wave rectifier project, we'll include the main components and their connections. As you haven't provided the specific manufacturer part numbers (MPN) for the diodes or capacitor, we'll simply list their designators. Here's the mermaid diagram:

Image


AC Source
(V1)
Diode
(D1)
Diode
(D2)
Diode
(D3)
Diode
(D4)
Capacitor
(C1)
100uF
Resistor
(R1)
220 Ohm
Ground
Diagram Details

  • AC Source (V1): Provides the alternating current input.
  • Diodes (D1, D2, D3, D4): Form a bridge rectifier that converts AC to DC.
  • Capacitor (C1): Smooths the output waveform after rectification.
  • Resistor (R1): Represents the load in the circuit.
This diagram visually represents the connections and functional flow of your rectifier project. If you have the specific part numbers, feel free to update each block with that information. Let me know if you need any further modifications!
2mo
Someone is typing...
8
D1
V1

Full-wave rectifier

Full-wave rectifier
Description

Created
September 16th 2020
Last updated by jharwinbarrozo
2 years ago
3 Contributor(s)
jharwinbarrozo
moxley01
natarius

Controls

Properties

Availability & Pricing

DistributorQty 1

Assets

    Simulation

    ms

    Simulation Speed

    necesito el circuito de un diodo rectificador
    @copilot necesito el circuito de un diodo rectificador
    2mo
    the exit frequency equal to the frequency of the source?
    the exit frequency equal to the frequency of the source?
    1y
    1y
    Sí, puedo ayudarte con eso. Aquí tienes un proyecto de un generador de formas de onda (V1 en tu proyecto) que puede generar una corriente continua o alterna, y que es simétrico.
    Este generador de formas de onda permite establecer no solo los niveles de voltaje positivo y negativo, sino también parámetros como la frecuencia y la fase.
    En el caso de una corriente continua, se puede ajustar la frecuencia a 0 Hz y establecer la amplitud al valor de voltaje deseado. La polaridad de la corriente es simétrica ya que el generador puede producir un voltaje tanto positivo como negativo.
    Para corriente alterna, puedes ajustar la frecuencia a cualquier valor distinto de cero y la amplitud al valor de voltaje pico deseado. El generador de formas de onda producirá una señal sinusoidal con la frecuencia y la amplitud especificadas.
    Ten en cuenta que el generador de formas de onda (Waveform Generator) ya está presente en tu proyecto actual como el componente V1.
    1y
    vale el circuito sin la resistencia ??
    1y
    Sí, el circuito funcionaría técnicamente sin la resistencia (R1), pero la eliminación de la resistencia cambiaría la funcionalidad del circuito.
    La resistencia en un circuito de rectificación de onda completa ayuda a limitar la corriente a través del circuito, protegiendo así los componentes de cualquier daño potencial debido a una corriente excesiva. Además, en combinación con el condensador, la resistencia también ayuda a suavizar la onda rectificada.
    Si eliminas la resistencia de este circuito:

    1. El condensador C1 se cargará hasta el valor pico del voltaje de entrada al instante. Esto podría ser un problema si la alimentación puede suministrar mucha corriente o si el condensador es muy grande ya que podría causar una corriente de sobrecarga.
    2. La caída de tensión en el circuito será solo la caída de tensión en los diodos, que será aproximadamente 0.7V para cada diodo en conducción.
    Por lo tanto, dependiendo de tu aplicación específica, puedes decidir si trabajar con o sin la resistencia. Sin embargo, a menudo es una buena práctica de diseño incluir tal resistencia para la protección del circuito.
    1y
    en donde conecto el osciloscopio para medir la onda rectificada ?
    1y
    El osciloscopio se puede conectar de dos maneras dependiendo de lo que quieras observar:

    1. Si deseas observar la señal rectificada antes de la filtración, puedes conectar un canal del osciloscopio a los nodos de conexión del diodo y el condensador. En tu caso, esto sería entre D2:K/D4:K (Anodo de D2 o D4) y C1:ANODE (Anodo del condensador).
    2. Para observar la señal después de la filtración (es decir, la señal de salida suavizada), debes conectar el osciloscopio en paralelo con la resistencia de carga. En tu caso, esto estaría en ambos lados de R1 (R1:P1 y R1:P2).
    En ambos casos, el terminal de tierra del osciloscopio debe conectarse a la línea de tierra de tu circuito.
    Source(s):
    1y
    vale el circuito sin la resistencia ??
    vale el circuito sin la resistencia ??
    1y
    ayudame haciendo Construir/ simular una fuente de corriente continua o alterna q...
    @copilot ayudame haciendo Construir/ simular una fuente de corriente continua o alterna que tenga valores fijos y variables, que sea simétrico (que tenga negativo y positivo)
    1y
    Para crear una fuente de corriente continua o alterna que tenga valores fijos y variables, y que sea simétrica (que tenga negativo y positivo), puede usar las siguientes conexiones basadas en sus componentes:

    • Para la fuente de corriente alterna (AC), puede usar el componente del generador de ondas V1. Puede definir la forma de onda, la amplitud y la frecuencia según sea necesario.
    • Para la fuente de corriente continua (DC), puede usar una combinación de cuatro diodos D1, D2, D3 y D4 para formar un rectificador de puente. Este convertirá la corriente alterna del generador de ondas en corriente continua.
    • C1 actúa como un condensador de filtro, suavizando la onda rectificada de la corriente continua y proporcionando una salida de corriente continua más constante.
    • Finalmente, R1 actúa como una resistencia de carga para la fuente de corriente continua.
    Para cambiar los valores de la fuente de corriente, puede ajustar la frecuencia y la amplitud del generador de ondas V1. Esto cambiará las características de la corriente alterna que se rectifica en corriente continua.
    Tenga en cuenta que los diodos solo permiten el flujo de corriente en una dirección, por lo que la configuración del puente de diodos le proporciona una corriente continua simétrica, con partes tanto negativas como positivas.
    Tenga en cuenta que esta es solo una explicación simplificada y que puede haber muchos factores y detalles adicionales a tener en cuenta en su diseño específico.
    Source(s):
    1y
    Sí, de acuerdo con sus componentes y las conexiones definidas en su Netlist, este proyecto es un circuito de un rectificador de onda completa. Aquí está cómo funcionaría:

    1. El generador de forma de onda V1 produce una corriente alterna (AC).
    2. Los diodos D1, D2, D3 y D4 forman un puente rectificador. Este puente de diodos cambia la polaridad negativa de la señal de CA a positiva, proporcionando una señal de corriente directa pulsante.
    3. El condensador C1 filtra la señal de corriente continua de pulsos del puente de diodos para producir una señal de corriente continua más suave.
    4. La resistencia R1 conectada después del condensador representa la carga del circuito.
    Esto significa que, con la presente configuración, cualquier corriente alterna entrante del generador de onda se transformará en un flujo de corriente continua después de pasar por la red del rectificador de onda completa.
    1y
    el circuito que esta hecho representa eso ¡
    1y
    una pregunta tu me puedes explicar el circuito que se ve en la pantalla?
    1y
    Por supuesto. Este circuito es un rectificador de onda completa. Aquí está cómo funciona, basado en su lista de componentes y conexiones (Netlist):

    1. V1 es una fuente de corriente alterna (AC). La corriente se desplaza sucesivamente a través de los puntos P1 y P2, oscilando entre posiciones positivas y negativas.
    2. Los diodos D1, D2, D3, y D4 están configurados en una formación de puente. Esto permite que la corriente en ambos ciclos positivo y negativo de la señal de AC sea conducida en la misma dirección. Como resultado, se obtiene una señal de corriente continua pulsante (rectificado de onda completa).
      Los diodos se conectan de la siguiente manera:

      • D1 conecta V1 (lado positivo) con D2 y R1.
      • D2 conecta D1, R1 y C1 (lado positivo) con la salida.
      • D3 conecta V1 (lado negativo) con D4 y C1 (lado negativo).
      • D4 conecta D3, C1 (lado negativo) y R1 con la salida.
    3. C1 es un capacitor que actúa como filtro, suavizando las fluctuaciones de la señal rectificada y proporcionando una señal de corriente continua más constante. En el contexto de la red actual, se conecta a ambos lados de la carga (R1).
    4. R1 es una resistencia representando la carga en el circuito. Recibe la corriente continua final desde D2 y D4, después de su filtrado por C1.
    En general, este circuito toma corriente alterna desde V1, la rectifica a corriente continua mediante el puente de diodos, suaviza la señal con el capacitor C1, y finalmente la entrega a la carga R1.
    Source(s):
    1y
    Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reac...
    Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reach me at any time by tagging me on comments or in the chat with my handle, @copilot.
    1y
    Someone is typing...
    Checks that the power traveling across a given resistor is under its rating with 50% headroom.
    Learn more
    Checks that IC pins that require pull up or pull down resistors have them.
    Learn more
    Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
    Checks that all parts have a part number and are available from distributors.
    Reports copper elements that are shorting.
    Designator
    PN Junction Diode D2
    Polarized Capacitor C1
    PN Junction Diode D4
    PN Junction Diode D3
    PN Junction Diode D1
    Fixed Resistor R1
    Waveform Generator V1
    Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
    Reports components that have been modified using the "!important" flag.
    Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
    Reports nodes that are using rules that are not supported anymore.
    Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
    Detect any via, trace or copper fill island that is not connected to any net.