Rechargeable Battery Pack Design

1:31

General (prev)
Chat History
Project
Action
Here’s the updated BOM after executing the component additions:

Table


DesignatorQtyPartDescription
J11J1USB-C inlet with CC resistors
U11U11 A linear Li-ion charger IC
U21U2Over-charge/over-discharge protection IC + FETs
U31U3Fixed 3.0 V LDO regulator, 250 mA
U41U410-step LED bar-graph driver
SW11Pushbutton, TactileMomentary “Test” button
D110LED, 0805Indicator LEDs (D1–D10)
B14Li-ion Cell1 S Li-ion cells in parallel
C13Capacitor, 100 nF, 0603Decoupling capacitors for U1, U3, U4
C23Capacitor, 10 µF, 0603Bulk decoupling capacitors for U1, U3, U4
R11Resistor, 10 kΩ, 0603Pull-down for SW1
R22Resistor, 5.1 kΩ, 0603CC-line resistors for USB-C interface
263 days

Ready.


create a high level mermaid block diagram of this project. Include key component...

@copilot create a high level mermaid block diagram of this project. Include key component's manufacturer part number in each block whenever possible.
1y
Given the details of your project—a constant current (DC) power supply, and the fact that specific manufacturer part numbers haven't been included—I will construct a high-level Mermaid block diagram assuming a generic setup for such a circuit. To make this more realistic, I'll infer typical components used in a constant current DC supply circuit. Note that for a more precise diagram, providing component specifications and manufacturer part numbers would be necessary.
Since we are focusing on a constant current power supply, the key components might include:
  • A DC input source
  • A current regulator (which could be a specific IC designed for current regulation)
  • Connective components such as resistors and capacitors for filtering and stability
  • Terminals for the output (ANODE and CATHODE, as mentioned)
However, without specific part numbers or detailed requirements (such as desired current output, voltage range, etc.), I'll use generic placeholders. Here's an example Mermaid block diagram that represents these components:

Mermaid


graph TD
    DC_Input["("DC Input Source")"] -->|DC Voltage| Current_Regulator["("Current Regulator ICGeneric")"]
    Current_Regulator -->|Filtered DC| Capacitor["("Filter CapacitorGeneric")"]
    Capacitor --> Output_Terminals["("Output TerminalsCATHODE & ANODE")"]

    classDef default fill:#f9f,stroke:#333,stroke-width:2px;
Explanation:
  1. DC Input Source: This is the start of your constant current power supply. It's a DC power source whose specifications depend on your project requirements.
  2. Current Regulator: A crucial component that controls the current flow to a constant value. This could be an integrated circuit specifically designed for constant current control. Since we don't have a specific part number, it's labeled as "Generic."
  3. Filter Capacitor: Used to smooth out any fluctuations in the DC supply to provide a stable output. The value and specifications depend on the exact requirements of your circuit (e.g., output current, voltage, etc.).
  4. Output Terminals: Your project mentions ANODE and CATHODE terminals, which are simply the points where your constant current supply's output is accessed.
Note: This diagram is quite generic due to the lack of specific details about the components used in your project. If you have certain ICs, capacitors, or any other components in mind (along with their manufacturer part numbers), please share them for a more detailed and accurate diagram.
1y
Someone is typing...
buatkan saya driver sound

@copilot buatkan saya driver sound
2y
Tentu saja, saya bisa membantu Anda merancang sebuah driver suara sederhana. Ini bisa menjadi skematik dasar untuk amplifier audio mono menggunakan LM386 yang merupakan IC yang sangat populer untuk keperluan ini. Berikut adalah komponen yang Anda butuhkan dan bagaimana mereka harus disambungkan:
Komponen yang Anda perlukan:
  • [1x] IC Amplifier Audio LM386
  • [1x] Resistor 10k (R1)
  • [1x] Potensiometer 10k (R2, untuk kontrol volume)
  • [2x] Capacitor 10 μF, 25V (C1, C2)
  • [1x] Capacitor 100 μF, 25V (C3)
  • [1x] Capacitor 0.047 μF (C4)
  • [1x] Kapasitor 0.1 μF (C5)
  • [1x] Speaker 8 Ω
  • Masukan sumber suara (mis. telepon genggam atau pemutar musik)
Sambungan skematik:
  1. Pin 2 (inverting input) dari LM386 dihubungkan ke titik tengah potensiometer 10k (R2).
  2. Pin 3 (non-inverting input) dari LM386 dihubungkan ke ground.
  3. Pin 4 (ground) dari LM386 juga dihubungkan ke ground.
  4. Resistor (R1) 10k Terhubung antara pin 1 dan pin 8.
  5. Capacitor 10uF (C1), 100uF (C3), dan 0.047uF (C4) ditempatkan secara paralel antara pin 5 dan ground.
  6. Capacitor 10uF (C2) ditempatkan antara pin 5 dan speaker, dan sisi lain dari speaker dihubungkan ke ground.
  7. Capacitor 0.1uF (C5) ditempatkan antara input suara dan pin 2 dari IC.
  8. Vsupply (+5V to +12V) dihubungkan ke pin 6 dan ground ke pin 4 dari IC.
Silakan ubah komponen sesuai yang Anda inginkan dan batasan desain Anda. Saya asumsikan nilai-nilai ini berdasarkan penggunaan yang paling umum. Untuk pekerjaan yang lebih rumit atau spesifik, Anda mungkin harus berkonsultasi dengan seorang insinyur listrik atau menggunakan alat simulasi. Juga, jangan lupa untuk menghubungkan papan PCB Anda ke ground yang benar selesai Anda merangkai ini.
2y
Someone is typing...
4

@copiloto ciucuito par led 12v dc de una fuente 48v dc
1y
Vamos a diseñar un circuito de alimentación LED de 12V DC utilizando una fuente de 48V DC. Para ello, necesitamos algunos componentes clave:
  1. Resistor: Para limitar la corriente a través del LED.
  2. Convertidor DC-DC: Para convertir 48V DC a 12V DC.
  3. LED: Para ser alimentado por nuestra fuente de 12V DC.
Pasos para el diseño
  1. Convertidor DC-DC:
    • Un convertidor buck o step-down convertirá eficientemente 48V DC a 12V DC. Puedes usar un módulo como el LM2596 ajustable para esta tarea.
    Conexiones del convertidor DC-DC:
    • Entrada 48V DC: Conecta la entrada de 48V DC al pin de entrada del convertidor.
    • Salida 12V DC: Ajusta el convertidor para que entregue 12V DC en la salida.
  2. Resistor:
    • Asumamos que el LED trabaja a 12V directos y consume una corriente de 20mA.
    • Para asegurar una corriente constante a través del LED, necesitaremos calcular el valor del resistor.
    $ R = \frac{V_{fuente} - V_{LED}}{I_{LED}} \approx \frac{12V - 12V}{20mA} = 0, \Omega $
    • En este caso, el resistor podría no ser necesario si el LED está diseñado para operar directamente a 12V.
  3. LED:
    • Conecta el cátodo del LED al negativo del convertidor DC-DC y el ánodo al positivo del convertidor DC-DC.
Conexiones del circuito
  • Fuente de 48V DC:
    • Conecta el positivo de la fuente de 48V DC a la entrada IN+ del LM2596.
    • Conecta el negativo de la fuente de 48V DC a la entrada IN- del LM2596.
  • Convertidor DC-DC:
    • Conecta la salida OUT+ del LM2596 al ánodo del LED.
    • Conecta la salida OUT- del LM2596 al cátodo del LED.
Aquí tienes un resumen de las conexiones:
  • Conecta Fuente de 48V DC:Positivo a LM2596:IN+.
  • Conecta Fuente de 48V DC:Negativo a LM2596:IN-.
  • Conecta LM2596:OUT+ a Ánodo del LED.
  • Conecta LM2596:OUT- a Cátodo del LED.
Si necesitas algún valor específico o componente adicional, por favor házmelo saber.
1y
circuito para conectar led de 12v dc a una fuente de 48v dc
1y
1y
Something went wrong, sorry. Please try again.
1y
Someone is typing...
11
how do I connect CATHODE and ANODE?

2y
@copilot how do I connect CATHODE and ANODE?
2y
To connect CATHODE and ANODE in Flux, you need to be in the schematic view and follow the steps below:
  1. Hover over the CATHODE terminal to reveal its terminals, denoted by white dots.
  2. Click on the white dot to begin routing mode.
  3. While still in routing mode, click on the terminal (white dot) of the ANODE terminal to complete the connection.
If you wish to change the direction of the route, you can press the "f" key. To cancel the routing process at any point, press the escape key[1].
Please note that this operation should be completed taking into consideration the rules of your specific circuit and electrical safety standards.
If you're new to Flux, remember that this is a browser-based electronics design tool. That means that all you need to access the full development environment is a computer and an internet connection. Flux promotes reusability, collaboration, and focus, reducing distractions and repetitive tasks through integrating key workflows into one app[2].
2y
Someone is typing...
3
how to adjust the voltage?

@copilot how to adjust the voltage?
1y
To adjust the voltage of a DC power supply, you typically use a voltage regulator. Let's say you want to design a simple adjustable DC power supply with the following components:
  1. Transformer to step down AC voltage.
  2. Bridge Rectifier to convert AC to DC.
  3. Smoothing Capacitor to reduce ripple in the DC output.
  4. Adjustable Voltage Regulator such as the LM317.
Basic Schematic Connections:
  1. Transformer Secondary Windings:
    • Connect one end to the AC1 input of the bridge rectifier.
    • Connect the other end to the AC2 input of the bridge rectifier.
  2. Bridge Rectifier Outputs:
    • Connect DC output (+) of the bridge rectifier to the positive terminal of the smoothing capacitor.
    • Connect DC output (-) of the bridge rectifier to the negative terminal of the smoothing capacitor.
  3. Voltage Regulation with LM317:
    • Connect the positive terminal of the smoothing capacitor to the Input pin (1) of the LM317.
    • Connect the negative terminal of the smoothing capacitor to GND (3) of the LM317.
    • Place a resistor (R1) between Adjust pin (2) and GND (3).
    • Place a potentiometer (R2) between Output pin (2) and Adjust pin (1) of the LM317.
  4. Output Terminals:
    • Connect the Output pin (2) of the LM317 to your ANODE terminal.
    • Connect the negative terminal of the smoothing capacitor to your CATHODE terminal.
Detailed Connections:
  • Transformer:
    • Primary Windings to your AC supply (e.g., 230V AC).
    • Secondary Windings:
      • Connect to Rectifier AC inputs.
  • Rectifier:
    • Connect DC output (+) to C1:1 (positive terminal).
    • Connect DC output (-) to C1:2 (negative terminal).
  • Smoothing Capacitor (C1):
    • Connect (negative terminal) to LM317:GND and Rectifier DC Output (-).
    • Connect (positive terminal) to LM317:IN and Rectifier DC Output (+).
  • Adjustable Voltage Regulator:
    • Connect LM317:IN to C1:(positive terminal).
    • Connect LM317:GND to C1:(negative terminal).
    • Connect a resistor (R1, e.g., 240 Ohm) across LM317:ADJ and GND.
    • Connect a potentiometer (R2, e.g., 5k Ohm) across LM317:OUT and ADJ.
  • Output Terminals (from LM317):
    • Connect OUT to ANODE terminal.
    • Connect GND to CATHODE terminal.
Adjusting the Voltage:
Turning the potentiometer (R2) will change the voltage on the ADJ pin, thus changing the output voltage of the LM317. The output voltage $V_{out}$ can be found using the formula:
Vout=1.25(1+R2R1)+IADJR2V_{out} = 1.25 \left( 1 + \frac{R2}{R1} \right) + I_{ADJ}R2
where $I_{ADJ}$ (typically in µA range) can often be neglected for simplicity.
Would you like to proceed with a specific design or have additional requirements?
1y
Someone is typing...
12
explain this project.

2y
@copilot explain this project.
2y
This project is a simple Constant Current (CC) Direct Current (DC) power supply. Direct current electrical circuits provide a constant flow of electricity that doesn’t change direction. Such power supplies are often used in battery chargers, LED drivers, and other applications where a consistent current is required.
The project currently consists of only two components each having one pin:
  1. A terminal identified as the Cathode (Designator: CATHODE), which is generally the negative terminal in a DC circuit
  2. A terminal identified as the Anode (Designator: ANODE), which is typically the positive terminal in a DC circuit
Please note, as the description indicates, "No electrical connections have been made in this project yet." This suggests that the layout of the schematic is in the initial stage, with the terminals placed and ready for the addition of further components and connections.
This CC DC supply seems to be intended for a voltage of 0 volts as described in property Voltage,5. This might imply a placeholder and is expected to change in the course of the design process.
It appears the project is in a very early stage, and in order for it to function as a power supply, it still needs the major circuit elements like a power source (battery or wall-socket), resistor(s), and transistor arrangement. The Designator Prefix,V: 1 comment suggests that the first voltage source added to the project should be labelled 'V1'.
2y
Someone is typing...
5
how do I use Flux?

@copilot how do I use Flux?
1y
Using Flux, the browser-based electronics CAD program for designing electronic schematics and PCB layouts, is straightforward and user-friendly. Here's how you can get started:
  1. Create Your First Project:
    • Go to the Flux website and sign up or log in to your account.
    • Begin a new project by selecting the option to create a new schematic or PCB layout. This will open the design editor.
  2. Design Your Schematic:
    • Use the components library to find the electronic components you need for your design.
    • Drag and drop the components onto the canvas.
    • Connect the components using the wire tool to form your circuit.
  3. Design Your PCB Layout:
    • Once your schematic is complete, you can switch to the PCB layout view.
    • Flux will generate an initial layout based on your schematic. You can then move and rotate the components to optimize the layout.
    • Use the trace tool to manually draw the connections between component pads or use the auto-router to automate this process.
  4. Collaborate and Share:
    • Flux supports collaborative features allowing you to work with team members in real-time.
    • You can share your project with others for feedback or assistance.
  5. Export and Manufacture:
    • When your design is complete, you can export the necessary files for manufacturing, such as Gerber files for the PCB fabrication.
  6. Seek Help and Resources:
    • If you're new or need help along the way, Flux offers several resources:
      • Access the Help and Tutorials section for guidance[1].
      • Explore video tutorials for visual learning on specific tasks within Flux[2].
      • Join the Flux Slack community to connect with other users and get support[1].
      • Utilize live support for direct assistance with your inquiries[2].
Remember, the best way to learn is by doing, so don't hesitate to start experimenting with your own designs. Happy designing!
1y
Someone is typing...
8
explain this project.

@copilot explain this project.
2y
The provided project describes the initial stage of designing a constant current direct current (DC) power supply circuit. Here's a breakdown of the components present:
  • ANODE (P): This is a terminal designed to represent the anode connection in a circuit, which is typically where the current flows into.
  • CATHODE (P): This is a second terminal that generally represents the cathode connection in a circuit or device, which is typically where current flows out of.
However, no electrical connections have been made in the project yet. Depending on the desired voltage, current, and power rating of the power supply, many other components may be required, such as transformers, diodes, resistors, and capacitors.
The designator prefixes V and P for voltage and terminals are also specified.
The numbers 5 and 1 next to 'Voltage,' and 'Designator Prefix, V:' might refer to the expected input voltage for the power supply or represent some other schema or naming convention used in this project. The exact implications are unclear without additional context.
2y
Someone is typing...
5
como hago un circuito sencillo?

@copilot como hago un circuito sencillo?
1y
Para crear un circuito sencillo de suministro de corriente constante (DC) en Flux, se pueden seguir una serie de pasos básicos. Tomando en cuenta los componentes ya mencionados (cátodo y ánodo), un circuito sencillo de este tipo podría incluir un diodo LED (para simplificar, representado por los terminales cátodo y ánodo mencionados), una resistencia para limitar la corriente, y una fuente de alimentación.
Voy a asumir que deseas alimentar el LED con una corriente constante de $20 mA$ y que la fuente de alimentación proporciona $5V$. Un LED típico requiere unos $2V$ para funcionar correctamente, por lo que la caída de voltaje a través de la resistencia será de $3V$ (esto se calcula como $5V - 2V = 3V$). Usando la ley de Ohm, $V = IR$, donde $V$ es la caída de voltaje, $I$ la corriente deseada, y $R$ la resistencia, podemos calcular el valor de la resistencia necesaria.
  • Cálculo de la resistencia:
    La corriente deseada es $20 mA$ o $0.02 A$, y la caída de voltaje es $3V$, entonces: R=VI=3V0.02A=150ΩR = \frac{V}{I} = \frac{3V}{0.02A} = 150 \Omega
Ahora, para conectar el circuito en Flux, sigamos estos pasos:
  1. Añadir la fuente de alimentación:
    • Usa una fuente de $5V$. Puedes buscar en la biblioteca de componentes por una fuente de alimentación y colocarla en tu esquema.
  2. Conectar la resistencia:
    • Añade una resistencia de $150\Omega$ al esquema. Puedes buscar una resistencia en la biblioteca de componentes.
  3. Conectar el LED (representado por los terminales ANODE y CATHODE):
    • Aunque aquí no se especifica un componente LED como tal, estamos trabajando con terminales que representan el ánodo y el cátodo de un diodo.
Aquí están los pasos para conectar los componentes:
  • Conecta el positivo de la fuente de alimentación ($+5V$) al primer terminal de la resistencia (asumiendo R1:1).
  • Conecta el segundo terminal de la resistencia (R1:2) al Ánodo (ANODE:1).
  • Conecta el Cátodo (CATHODE:1) al negativo de la fuente de alimentación ($GND$).
Estos pasos configurarán un circuito simple de suministro de corriente constante adecuado para alimentar un LED. Recuerda, la resistencia exacta necesaria depende del tipo específico de LED que estés usando, así que ajusta el valor de $150\Omega$ según sea necesario.
1y
Someone is typing...
9
CATHODE
ANODE


  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    Wirelessly connects nets on schematic. Used to organize schematics and separate functional blocks. To wirelessly connect net portals, give them same designator. #portal
  • Power Net Portal
    Wirelessly connects power nets on schematic. Identical to the net portal, but with a power symbol. Used to organize schematics and separate functional blocks. To wirelessly connect power net portals, give them the same designator. #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor ideal for rapid circuit topology development. You can choose between polarized and non-polarized types, its symbol and the footprint will automatically adapt based on your selection. Supported options include standard SMD sizes for ceramic capacitors (e.g., 0402, 0603, 0805), SMD sizes for aluminum electrolytic capacitors, and through-hole footprints for polarized capacitors. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink

Inspect

DC Supply

DC Supply
Description

Created
Last updated by jharwinbarrozo
2 Contributor(s)
jharwinbarrozo
moxley02

Controls

Properties

Voltage
5 V
Designator Prefix
V

Availability & Pricing

DistributorQty 1

Assets