• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • RMCF0805JT47K0
    47 kOhms ±5% 0.125W, 1/8W Chip Resistor 0805 (2012 Metric) Automotive AEC-Q200 Thick Film #forLedBlink
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
recommend a replacement for U1.

@copilot recommend a replacement for U1.
1y
Given that your project's U1 is an Arduino Micro (ATmega32U4), suitable alternatives could be Arduino boards with comparable features. Here are a few suggestions:
  1. Arduino Leonardo: Just like the Arduino Micro, the Leonardo uses the ATmega32U4. Its form factor is larger, but functionally it's very similar, with almost identical pinouts.
  2. Teensy 2.0: This board also uses the ATmega32U4 MCU. It's also about the same size as the Arduino Micro, but it has a larger number of I/O pins.
  3. SparkFun Pro Micro - 5V/16MHz: This is another ATmega32U4-based board, similarly sized to the Arduino Micro. It's engineered by SparkFun and has some hardware layout differences, but functionally it will perform similarly to the Arduino Micro.
  4. Adafruit ItsyBitsy 32u4 - 5V 16MHz: This is a small, breadboard-friendly board based on the ATmega32U4. It will run the Adafruit CircuitPython or Arduino IDE and has similar functionality to Arduino Micro.
Remember that these recommendations are made based on the assumption you want to keep the feature set of the Arduino Micro. Also, keep in mind that while the pin configurations may be similar, they might not be 100% identical. Always be sure to check the pin mapping of the new board before you start the redesigning process to avoid any potential issues.
1y
Someone is typing...
What's the difference between reset and reset 1

add resistor
1y
What's the difference between reset and reset 1
1y
Someone is typing...
2
please explain what U1 does.

@copilot please explain what U1 does.
11mo
The component designated as U1 in your project is an Arduino Micro, which is a compact microcontroller board based on the ATmega32U4. This microcontroller offers a versatile 8-bit computing solution commonly used in embedded systems. Here's an outline of its functionalities and features:
  • Microcontroller Core: ATmega32U4 is at the heart of the Arduino Micro. This MCU (Microcontroller Unit) operates at 16 MHz, providing the computational power needed for processing data and executing instructions. It's suitable for a wide range of applications, from simple DIY projects to more complex embedded systems.
  • Digital and Analog I/O Pins: The Arduino Micro comes with a mix of digital and analog pins, which you can program to interact with various sensors, actuators, and other electronic components. These pins include:
    • Digital I/O Pins: Used for digital input and output. Some of these pins are PWM (Pulse Width Modulation) capable, allowing for analog-like output for controlling the brightness of LEDs or the speed of motors.
    • Analog Input Pins: Used to read analog voltages, useful for interfacing with analog sensors like temperature or light sensors.
  • Communication Interfaces: It provides several communication interfaces, including:
    • Serial Communication (RX/TX) for UART communication.
    • I2C Communication (SDA/SCL) for connecting to I2C devices like sensors and OLED displays.
    • SPI Communication (MOSI/MISO/SCK) for fast serial data transfer.
    • USB Communication, facilitated by ATmega32U4's built-in USB capabilities, allowing it to easily connect with computers for programming and serial communication.
  • Power Supply Pins: The Arduino Micro can be powered through the VIN pin for an external power supply, or it can use USB power. It also offers regulated 3.3V and 5V output pins to power external components.
  • Integrated LED: Pin 13 has an integrated LED, which is useful for basic debugging and visual signaling.
  • Reset Pin: It offers a reset functionality, enabling you to restart your microcontroller program.
Overall, the Arduino Micro is a versatile and compact microcontroller board suitable for a wide array of electronic projects, from simple hobbyist experiments to advanced embedded systems development. Its combination of I/O capabilities, communication interfaces, and compact form factor make it a popular choice among electronics enthusiasts and engineers alike.
11mo
Someone is typing...
6
create a high level mermaid block diagram of this project. Include key component...

@copilot create a high level mermaid block diagram of this project. Include key component's manufacturer part number in each block whenever possible.
6mo
Sure, I'll create a high-level mermaid block diagram for your Arduino Micro Template project. The only component provided is the Arduino Micro, so I'll focus on it for the block diagram.
Here's the mermaid code for the block diagram:
This diagram outlines the various pins of the Arduino Micro. Feel free to expand or modify it as per your project's specific needs. If you add more components, you can link them accordingly to this diagram.
6mo
Someone is typing...
7
Hey lets make that robot

Hacer las canciones para un led de 8 segmentos que se controle con un botón
1y
Hey lets make that robot
1y
Someone is typing...
1
U1

Arduino Micro Template

Arduino Micro Template
Description

Created
November 12th 2022
Last updated by jharwinbarrozo
2 years ago
1 Contributor(s)
jharwinbarrozo

Controls

Properties

Availability & Pricing

DistributorQty 1

Assets

Simulation

µs

Simulation Speed

necesito un circuito que simule una señal de 0 a 2000mv con un micro arduino
@copilot necesito un circuito que simule una señal de 0 a 2000mv con un micro arduino
2mo
Para simular una señal de 0 a 2000 mV (0 a 2 V) utilizando un Arduino Micro, podemos utilizar la modulación por ancho de pulso (PWM) junto con un filtro de paso bajo para obtener una salida de voltaje analógica suave. Aquí está una descripción de cómo puedes hacerlo:
Componentes necesarios:
  1. Arduino Micro (que ya tienes).
  2. Resistencias y capacitores para el filtro de paso bajo.
  3. Cableado para las conexiones.
Conexiones:
  1. Salida PWM: Puedes usar cualquier pin PWM disponible, como el pin 3(PWM)/SCL del Arduino Micro.
  2. Filtro de paso bajo: Conecta una resistencia (adicional) al pin de salida PWM y luego un condensador a tierra. Este filtro suavizará la señal PWM a una señal de DC.
    • Por ejemplo:
      • Resistencia ($R$): 1 kΩ
      • Condensador ($C$): 10 µF
Esta configuración te dará una señal analógica más estable.
Código de Arduino:
Este es un ejemplo básico de código para producir una señal de 0 a 2000 mV en el pin PWM:

Cpp


const int pwmPin = 3; // Pin 3 para salida PWM
void setup() {
  pinMode(pwmPin, OUTPUT);
}

void loop() {
  // Simular señal de 0 a 2V
  for (int val = 0; val <= 255; val++) {
    analogWrite(pwmPin, val); // Salida de PWM
    delay(20); // Pequeña pausa
  }
  for (int val = 255; val >= 0; val--) {
    analogWrite(pwmPin, val); // Salida de PWM
    delay(20); // Pequeña pausa
  }
}
Consideraciones:
  • El valor de PWM de 0 a 255 corresponde a un ciclo de trabajo de 0 a 100%.
  • La salida PWM es de 5V, por lo que al cambiar el ciclo de trabajo, puedes ajustar el voltaje de salida adaptando $ V_{\text{out}} = 5V \times \left(\frac{\text{valor PWM}}{255}\right) $.
  • Con el filtro RC sugerido, puedes suavizar la señal, pero considera ajustar estos valores según tus requerimientos para balancear el tiempo de respuesta y la cantidad de suavizado.
¿Tienes alguna pregunta o te gustaría ajustar algo más en el diseño?
2mo
Para crear un esquema en formato PCB utilizando Flux.ai, tu proyecto necesita incluir los componentes y conexiones necesarias para simular una señal de 0 a 2000 mV usando PWM y un filtro pasivo.
Elementos del esquema:
  1. Arduino Micro: Ya está incluido en tu proyecto.
  2. Filtro de Paso Bajo RC: Utilizaremos componentes pasivos (resistencias y condensadores) para suavizar la señal PWM a una señal analógica.
Componentes y valores sugeridos para el filtro:
  • Resistor ($R1$): 2.2 kΩ
  • Capacitor ($C1$): 10 µF
Conexiones del Esquema:
  1. Conexión PWM:
    • Conecta U1:3(PWM)/SCL a $R1:1$.
    • Conecta $R1:2$ a $C1:1$.
    • Conecta $C1:2$ a $U1:GND$ para completar el filtro.
  2. Tierra (GND):
    • Conecta $C1:2$ a la tierra del Arduino Micro $U1:GND$.
Diagrama en Flux.ai
Para crear el diseño del PCB, sigue estos pasos en Flux:
  1. Añade los componentes: Coloca el Arduino Micro, un resistor y un capacitor en la disposición del PCB.
  2. Crea las conexiones: Usa las herramientas de trazo para realizar las conexiones según el esquema proporcionado.
  3. Diseño de PCB: Asegúrate de optimizar la ubicación de los componentes para minimizar las trazas largas y maximizar el uso de espacio.
Aunque actualmente no puedo generar directamente un archivo PCB, puedes implementar las conexiones sugeridas en tu diseño de Flux.ai basado en las pautas proporcionadas. ¿Te gustaría que te guíe sobre cómo continuar en Flux.ai?
2mo
me puedes dar el esquema en formato pcb?
2mo
how to obtain a 3d view
how to obtain a 3d view
11mo
dame un circuito electronico para fuente de alimentacion regulable
dame un circuito electronico para fuente de alimentacion regulable
1y
fuente de alimentacion regulable
fuente de alimentacion regulable
1y
hola
1y
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Reports copper elements that are shorting.
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.