• Terminal
    Terminal
    An electrical connector acting as reusable interface to a conductor and creating a point where external circuits can be connected.
  • Ground
    A common return path for electric current. Commonly known as ground.
  • Net Portal
    A net identifier used to create connectivity to other Net Portal with the same designator. #portal
  • Power Net Portal
    Power net portal is a special schematic object used to define a power or ground net. Power ports allow you to conveniently indicate a power net at any location in the design. Power nets of the same designator automatically connect throughout your design #portal #power
  • Generic Resistor
    A generic fixed resistor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard resistor values: 1.0Ω 10Ω 100Ω 1.0kΩ 10kΩ 100kΩ 1.0MΩ 1.1Ω 11Ω 110Ω 1.1kΩ 11kΩ 110kΩ 1.1MΩ 1.2Ω 12Ω 120Ω 1.2kΩ 12kΩ 120kΩ 1.2MΩ 1.3Ω 13Ω 130Ω 1.3kΩ 13kΩ 130kΩ 1.3MΩ 1.5Ω 15Ω 150Ω 1.5kΩ 15kΩ 150kΩ 1.5MΩ 1.6Ω 16Ω 160Ω 1.6kΩ 16kΩ 160kΩ 1.6MΩ 1.8Ω 18Ω 180Ω 1.8KΩ 18kΩ 180kΩ 1.8MΩ 2.0Ω 20Ω 200Ω 2.0kΩ 20kΩ 200kΩ 2.0MΩ 2.2Ω 22Ω 220Ω 2.2kΩ 22kΩ 220kΩ 2.2MΩ 2.4Ω 24Ω 240Ω 2.4kΩ 24kΩ 240kΩ 2.4MΩ 2.7Ω 27Ω 270Ω 2.7kΩ 27kΩ 270kΩ 2.7MΩ 3.0Ω 30Ω 300Ω 3.0KΩ 30KΩ 300KΩ 3.0MΩ 3.3Ω 33Ω 330Ω 3.3kΩ 33kΩ 330kΩ 3.3MΩ 3.6Ω 36Ω 360Ω 3.6kΩ 36kΩ 360kΩ 3.6MΩ 3.9Ω 39Ω 390Ω 3.9kΩ 39kΩ 390kΩ 3.9MΩ 4.3Ω 43Ω 430Ω 4.3kΩ 43KΩ 430KΩ 4.3MΩ 4.7Ω 47Ω 470Ω 4.7kΩ 47kΩ 470kΩ 4.7MΩ 5.1Ω 51Ω 510Ω 5.1kΩ 51kΩ 510kΩ 5.1MΩ 5.6Ω 56Ω 560Ω 5.6kΩ 56kΩ 560kΩ 5.6MΩ 6.2Ω 62Ω 620Ω 6.2kΩ 62KΩ 620KΩ 6.2MΩ 6.8Ω 68Ω 680Ω 6.8kΩ 68kΩ 680kΩ 6.8MΩ 7.5Ω 75Ω 750Ω 7.5kΩ 75kΩ 750kΩ 7.5MΩ 8.2Ω 82Ω 820Ω 8.2kΩ 82kΩ 820kΩ 8.2MΩ 9.1Ω 91Ω 910Ω 9.1kΩ 91kΩ 910kΩ 9.1MΩ #generics #CommonPartsLibrary
  • Generic Capacitor
    A generic fixed capacitor for rapid developing circuit topology. Save precious design time by seamlessly add more information to this part (value, footprint, etc.) as it becomes available. Standard capacitor values: 1.0pF 10pF 100pF 1000pF 0.01uF 0.1uF 1.0uF 10uF 100uF 1000uF 10,000uF 1.1pF 11pF 110pF 1100pF 1.2pF 12pF 120pF 1200pF 1.3pF 13pF 130pF 1300pF 1.5pF 15pF 150pF 1500pF 0.015uF 0.15uF 1.5uF 15uF 150uF 1500uF 1.6pF 16pF 160pF 1600pF 1.8pF 18pF 180pF 1800pF 2.0pF 20pF 200pF 2000pF 2.2pF 22pF 20pF 2200pF 0.022uF 0.22uF 2.2uF 22uF 220uF 2200uF 2.4pF 24pF 240pF 2400pF 2.7pF 27pF 270pF 2700pF 3.0pF 30pF 300pF 3000pF 3.3pF 33pF 330pF 3300pF 0.033uF 0.33uF 3.3uF 33uF 330uF 3300uF 3.6pF 36pF 360pF 3600pF 3.9pF 39pF 390pF 3900pF 4.3pF 43pF 430pF 4300pF 4.7pF 47pF 470pF 4700pF 0.047uF 0.47uF 4.7uF 47uF 470uF 4700uF 5.1pF 51pF 510pF 5100pF 5.6pF 56pF 560pF 5600pF 6.2pF 62pF 620pF 6200pF 6.8pF 68pF 680pF 6800pF 0.068uF 0.68uF 6.8uF 68uF 680uF 6800uF 7.5pF 75pF 750pF 7500pF 8.2pF 82pF 820pF 8200pF 9.1pF 91pF 910pF 9100pF #generics #CommonPartsLibrary
  • Generic Inductor
    A generic fixed inductor for rapid developing circuit topology. *You can now change the footprint and 3D model at the top level anytime you want. This is the power of #generics
  • 875105359001
    10uF Capacitor Aluminum Polymer 20% 16V SMD 5x5.3mm #forLedBlink #commonpartslibrary #capacitor #aluminumpolymer #radialcan
  • CTL1206FYW1T
    Yellow 595nm LED Indication - Discrete 1.7V 1206 (3216 Metric) #forLedBlink
  • 1070TR
    Battery Holder (Open) Coin, 20.0mm 1 Cell SMD (SMT) Tab bate or batt #forLedBlink
how do I use Flux?

@copilot how do I use Flux?
6mo
Flux is a powerful tool for designing electronic schematics and laying out PCBs right in your browser. Here are some steps to get started:

  1. Create an Account:

    • Visit flux.ai/signup to create an account. You can sign up with your email or link your Google account.
  2. Start a New Project:

    • Once logged in, you can start a new project by clicking on "Create New Project" from the dashboard.
  3. Place Components:

    • Drag components from the library onto the canvas and drop them where you would like them to be placed.
  4. Connect Components:

    • Use the wiring tool to connect the different pins of the components.
  5. Simulate Your Circuit:

    • You can run simulations to test your schematic. Learn more about how the simulator works in the dedicated tutorial.
  6. Positioning and Routing:

    • Once your schematic is ready, position the components and route the traces to design the PCB. You can learn more about the positioning and routing tools in the documentation.
  7. Get Help:

    • If you run into any issues or have questions, additional resources are available, such as the Flux Slack community where you can ask questions directly to the Flux team.
  8. Learn More:

    • Flux’s YouTube library has video tutorials, crash courses, and recorded events that can help you get familiar with the platform.
Feel free to ask if you have any specific questions or need further guidance on a particular aspect of Flux!
6mo
Someone is typing...
explain this project.

@copilot explain this project.
6mo
This project is designed to create an LED light show that synchronizes with the rhythm of music. The main component used for this synchronization is a TIP31C transistor, which acts as a voltage-controlled switch.
Here's a detailed explanation of each part of the circuit and its components:
1. Transistor (TIP31C)

  • The TIP31C is an NPN transistor used to amplify and switch electronic signals.
  • It acts as a voltage-controlled switch, allowing the current to flow through the LEDs in response to the voltage signal from the audio source.
2. Resistors (R1-R12)

  • Resistors limit the current flowing through the LEDs and the transistor.
  • The resistors with 180Ω ratings R1,R2,R3,R4,R5,R6,R7,R8,R9,R10R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_{10} are used to limit current through individual LEDs.
  • R11R_{11} (1kΩ) and R12R_{12} (1kΩ) are likely used for biasing the transistor.
3. LEDs (L1L10L_1-L_{10})

  • LEDs light up in response to the music signal processed by the transistor.
  • Each LED is paired with a resistor to limit the current and prevent damage.
4. Audio Signal Input

  • The audio signal from a music source is connected to the base of the transistor (likely through a current-limiting resistor like R12R_{12}).
  • When the audio signal is present, the transistor switches on and off, following the music's rhythm.
5. Power Supply (Battery B1)

  • The circuit is powered by a 9V battery (B1).
  • The battery's positive terminal (ANODE) is connected to various circuit points to provide voltage, and the negative terminal (CATHODE) is likely connected to ground.
6. Nets and Connections

  • Various nets (such as those listed for resistors and LEDs) ensure that the components are connected correctly to form the desired circuit behavior.
Connecting the Components

  • Power Connections:

    • Connect B1:ANODEB_1:ANODE (battery's positive terminal) to LP:P1LP:P1 (positive voltage distribution).
    • Connect B1:CATHODEB_1:CATHODE (battery's negative terminal) to GND:P (ground).
  • LED and Resistor Connections:

    • Connect resistor R1:P1R_1:P1 to LED L1:P2L_1:P2.
    • Repeat similar connections for each LED-resistor pair (R2L2R_2-L_2, R3L3R_3-L_3, etc.).
  • Transistor Biasing and Signal:

    • Connect R11:P1R_{11}:P1 to the positive voltage net ++.
    • Connect R12:P2R_{12}:P2 to the signal source and its other terminal (R12:P1R_{12}:P1) to LP:P2LP:P2.
    • Connect the base of the transistor to the junction of R12R_{12} and the signal source.
    • Connect the emitter of the transistor to ground (GND:P).
    • Connect the collector of the transistor to the combined net that drives the LEDs.
By following these instructions, you can create a circuit where the LEDs flash in sync with the music. If you need to adjust specific resistances or component values, feel free to ask!
6mo
Someone is typing...
3
R7
Resistance
180 Ω
R1
Resistance
180 Ω
+
R5
Resistance
180 Ω
R9
Resistance
180 Ω
R12
Resistance
1000 Ω
R4
Resistance
180 Ω
R8
Resistance
180 Ω
R3
Resistance
180 Ω
R2
Resistance
180 Ω
GND
R10
Resistance
180 Ω
R6
Resistance
180 Ω
B1
R11
Resistance
1000 Ω
L7
L5
L8
LP
L6
L10
L4
L9
L2
L1
L3

Music LED

Music LED
Description

Created
March 15th 2022
Last updated by evan
3 years ago
3 Contributor(s)
evan
jnk
ulrikaumeko253263

Controls

Properties

Another Package Or Case Code
Manufacturer Name
Hynix
Package or Case Code
usb_a_type_female

Availability & Pricing

DistributorQty 1
LCSC$0.05

Assets

Simulation

µs

Simulation Speed

que circuito es este
@copilot que circuito es este
6mo
Este circuito es un "Music LED" que hace parpadear 10 LEDs al ritmo de la música. Utiliza un transistor TIP31C para actuar como un interruptor controlado por voltaje. Aquí están los componentes claves y algunas conexiones básicas del circuito:
Componentes Clave

  • Resistencias (Resistors): R1 a R10 (180Ω), R11 y R12 (1KΩ)
  • LEDs (Lights): L1 a L10
  • Transistor: TIP31C (con nombres de pines B, C y E)
  • Fuente de Alimentación (Battery): B1 (9V)
  • GND y Alimentación (+)
Netos Importantes

  • Net: GND - Todos los pines GND del circuito están conectados a este neto.
  • Net: Net B1ANODEB1 - ANODE - Conecta el ánodo de la batería B1:ANODEB1:ANODE a LP:P1LP:P1.
  • Net: Net R12P1R12 - P1 - Conecta R12:P1R12:P1 a LP:P2LP:P2.
Conexiones Ejemplares

  1. Conexiones de LEDs con resistencias:

    • Conectar R1:P1R1:P1 a L1:P2L1:P2
    • Conectar R2:P1R2:P1 a L2:P2L2:P2
    • Conectar R3:P1R3:P1 a L3:P2L3:P2
    • Conectar R4:P1R4:P1 a L4:P2L4:P2
    • Conectar R5:P1R5:P1 a L5:P2L5:P2
    • Conectar R6:P1R6:P1 a L6:P2L6:P2
    • Conectar R7:P1R7:P1 a L7:P2L7:P2
    • Conectar R8:P1R8:P1 a L8:P2L8:P2
    • Conectar R9:P1R9:P1 a L9:P2L9:P2
    • Conectar R10:P1R10:P1 a L10:P2L10:P2
  2. Alimentación:

    • Conectar el Cátodo de la Batería B1:CATHODEB1:CATHODE a GND.
    • Conectar el Ánodo de la Batería B1:ANODEB1:ANODE a LP:P1LP:P1.
Este es un buen punto de partida para construir el circuito. Si necesitas detalles adicionales, por favor házmelo saber.
6mo
puedo reemplazar el transistor del circuito tip 31c por un irlb8314
6mo
Sí, puedes reemplazar el transistor TIP31C por un IRLB8314, pero hay algunas diferencias clave a tener en cuenta entre el TIP31C (un transistor NPN) y el IRLB8314 (un MOSFET de canal N).
Diferencias Clave

  1. Tipo de Transistor:

    • TIP31C: Transistor NPN, BJT
    • IRLB8314: MOSFET de canal N
  2. Configuración de Pines:

    • TIP31C: Base (B), Colector (C), Emisor (E)
    • IRLB8314: Puerta (G), Drenaje (D), Fuente (S)
  3. Controlar el Encendido/Apagado:

    • TIP31C: Se controla por corriente en la base.
    • IRLB8314: Se controla por voltaje en la puerta.
Adaptación del Circuito
Dado que el IRLB8314 es un MOSFET, tendrás que ajustar ligeramente el circuito de control. Aquí hay una guía sobre cómo hacer las conexiones:

  1. Puerta (Gate):

    • Conecta la puerta del MOSFET IRLB8314 a la salida de tu componente de control, donde antes estaba la base del TIP31C.
  2. Drenaje (Drain):

    • Conecta el drenaje del MOSFET IRLB8314 al mismo punto donde estaba el colector del TIP31C, es decir, a la carga (los LEDs en este caso).
  3. Fuente (Source):

    • Conecta la fuente del MOSFET IRLB8314 a GND.
Conexión de Pines para el MOSFET IRLB8314:

  • Conectar Gate (IRLB8314:G) al punto de control de señal de la música.
  • Conectar Drain (IRLB8314:D) a la serie de LEDs/resistencias (similar a la conexión del TIP31C:Colector).
  • Conectar Source (IRLB8314:S) a GND.
Ajuste de Control de la Puerta
Asegúrate de que el voltaje de entrada a la puerta del MOSFET sea suficiente para que el MOSFET conduzca, generalmente más de 2.5V para el IRLB8314, preferiblemente más cerca de 5V para una conmutación completa.
Ejemplo de Conexión:

  • Conectar R12:P1 a IRLB8314:G
  • Conectar R12:P2 a GND
  • Conectar LP:P1 a B1:ANODE
  • Conectar IRLB8314:D al punto conexión de LEDs (por ejemplo, R8:P1)
  • Conectar IRLB8314:S a GND
Con estas consideraciones, deberías poder reemplazar el TIP31C con éxito por un IRLB8314 en tu circuito "Music LED". Si tienes más dudas o necesitas ayuda adicional, avísame.
6mo
entre el IRLB8314 y el MDF11N60 cual seria mejor para el reemplazo del tip31c
6mo
Ambos transistores, el IRLB8314 y el MDF11N60, son MOSFETs de canal N, pero tienen características muy diferentes que debes considerar. Aquí hay una comparación rápida para ayudarte a tomar una decisión:
Comparación de Características

  1. IRLB8314:

    • Voltaje de drenaje-fuente (Vds máximo): 30V
    • Corriente de drenaje (Id máximo, @25°C): 120A
    • Rds(on) (resistencia de encendido): 1.9mΩ
    • Voltaje de umbral (Vgs(th)): 1.0V - 2.5V
    • Tipo de encapsulado: D2PAK
  2. MDF11N60:

    • Voltaje de drenaje-fuente (Vds máximo): 600V
    • Corriente de drenaje (Id máximo, @25°C): 10.5A
    • Rds(on) (resistencia de encendido): 0.63Ω
    • Voltaje de umbral (Vgs(th)): 3.0V - 5.0V
    • Tipo de encapsulado: TO-220
Ventajas y Desventajas

  1. IRLB8314:

    • Ventajas:

      • Baja resistencia de encendido (Rds(on)Rds(on)), lo que le permite manejar grandes corrientes con pérdida mínima.
      • Baja caída de voltaje de umbral, adecuado para la activación con bajos voltajes.
    • Desventajas:

      • Voltaje máximo (VdsVds) de sólo 30V, limitado para aplicaciones de bajo voltaje.
  2. MDF11N60:

    • Ventajas:

      • Alto voltaje de drenaje-fuente (VdsVds), adecuado para aplicaciones de alto voltaje.
    • Desventajas:

      • Alta resistencia de encendido (Rds(on)Rds(on)), lo que puede limitar la eficiencia.
      • Voltaje de umbral más alto, puede requerir una señal de control más fuerte para encenderse completamente.
Recomendación para Reemplazo del TIP31C
Para el reemplazo del TIP31C en un circuito que maneja LEDs controlados por la señal de música con una alimentación de 9V, el IRLB8314 es generalmente la mejor opción dado lo siguiente:

  • Compatibilidad con la baja alimentación de 9V: El IRLB8314 tiene un VdsVds máximo de 30V, lo cual es suficiente para tu circuito.
  • Mejor manejo de corriente y baja Rds(on)Rds(on): Permitirá una conducción eficiente sin calentarse excesivamente.
  • Fácil de Conducir: El voltaje de umbral del IRLB8314 es bajo, lo cual lo hace más fácilmente controlable con una señal de audio.
Ajuste Final del Circuito
Asegúrate de que la señal de control de la puerta le proporcione al IRLB8314 un voltaje suficiente (preferiblemente >= 5V).
Conexiones con IRLB8314:

  • Conectar Gate (IRLB8314:G) al punto de control de señal de la música.
  • Conectar Drain (IRLB8314:D) a la serie de LEDs/resistencias.
  • Conectar Source (IRLB8314:S) a GND.
Con estas consideraciones, el IRLB8314 sería un mejor reemplazo para tu aplicación especificada que el MDF11N60.
Si tienes alguna otra pregunta o necesitas más detalles, estaré encantado de ayudarte.
6mo
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reac...
Hey, I'm copilot! I can help you with all kinds of stuff in your project. Reach me at any time by tagging me on comments or in the chat with my handle, @copilot.
1y
Someone is typing...
Checks that the power traveling across a given resistor is under its rating with 50% headroom.
Learn more
Checks that IC pins that require pull up or pull down resistors have them.
Learn more
Checks that capacitors have appropriate voltage ratings to prevent overheating and ensure reliable circuit operation.
Checks that all parts have a part number and are available from distributors.
Des
Net
Des
Net
Pad
Trace e1e6
Net - (4969 - 880f)
+
Trace Segment
Net - (152e - undefined)
Trace Segment
Net - (ad6b - undefined)
Trace Segment
Net - (740c - 7814)
GND
Trace Segment
Net - (ad6b - undefined)
P2
Trace Segment
Net - (4969 - 880f)
P1
Trace Segment
Net - (0341 - c398)
P1
Trace 98a9
Net - (cad3 - 206c)
P2
Trace Segment
Net - (0341 - c398)
P2
Trace Segment
Net - (4969 - 880f)
P1
Trace Segment
Net - (0efe - dff5)
P1
Trace c38c
Net - (cad3 - 206c)
P1
Trace a93d
Net - (cad3 - 206c)
P2
Trace Segment
Net - (4969 - dff5)
Trace Segment
Net - (4969 - 880f)
P2
P1
Trace Segment
Net - (4969 - dff5)
P1
Trace cfdb
Net - (cad3 - 206c)
Trace Segment
Net - (54ac - c398)
P2
Trace Segment
Net - (d8fa - c398)
P1
P2
Trace Segment
Net - (4969 - 880f)
P1
Trace Segment
Net - (6fdd - dff5)
E
Trace Segment
Net - (740c - 7814)
Trace Segment
Net - (cad3 - 206c)
C
Trace Segment
Net - (e056 - 880f)
B
P2
Trace Segment
Net - (4969 - 880f)
Trace Segment
Net - (cad3 - c398)
P1
Trace Segment
Net - (4969 - 880f)
P2
Trace Segment
Net - (54ac - c398)
P1
Trace Segment
Net - (740c - 7814)
P1
P2
Trace Segment
Net - (6fdd - dff5)
P1
Trace 9b4b
Net - (cad3 - 206c)
P2
Trace Segment
Net - (9498 - c398)
P2
Trace Segment
Net - (4969 - 880f)
Trace Segment
Net - (a113 - dff5)
P1
Trace Segment
Net - (4969 - 880f)
P2
Trace Segment
Net - (df40 - c398)
P1
Trace Segment
Net - (4969 - 880f)
P2
Trace Segment
Net - (4969 - 880f)
P2
Trace Segment
Net - (c2fd - c398)
P1
Trace 9b7f
Net - (cad3 - 206c)
P1
Trace Segment
Net - (c2fd - c398)
P2
Trace a0d4
Net - (cad3 - 206c)
P1
Trace Segment
Net - (cad3 - c398)
P2
Trace Segment
Net - (4969 - 880f)
P2
Trace Segment
Net - (9498 - c398)
P1
P1
Trace fd89
Net - (cad3 - 206c)
Trace Segment
Net - (d8fa - c398)
P2
Trace d559
Net - (cad3 - 206c)
P1
Trace 6106
Net - (df40 - c398)
P2
Trace Segment
Net - (e056 - 880f)
P2
Trace Segment
Net - (152e - undefined)
P1
Trace Segment
Net - (cad3 - 206c)
P1
Trace Segment
Net - (0efe - dff5)
P2
Trace 68cc
Net - (cad3 - 206c)
P1
Trace Segment
Net - (a113 - dff5)
P2
Reports parts that have no footprint.
Reports nodes that are assigned to a layer that doesn't exist in the layout stackup.
Reports components that have been modified using the "!important" flag.
Reports terminals that are not connected properly. NOTE: Only connections to the center of pads are considered valid.
Reports nodes that are using rules that are not supported anymore.
Reports layers that have multiple copper fills of different nets. Make sure the Connected Layers rule value of nets with fills is valid.
Detect any via, trace or copper fill island that is not connected to any net.